A Chebyshev finite difference method for solving a class of optimal control problems

被引:20
作者
El-Kady, M [1 ]
机构
[1] S Valley Univ, Dept Math, Fac Sci, Aswan, Egypt
关键词
optimal control problems; Chebyshev approximations;
D O I
10.1080/0020716031000070625
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new Chebyshev finite difference method for solving class of optimal control problem is proposed. The algorithm is based on Chebyshev approximations of the derivatives arising in system dynamics. In the performance index, we use Chebyshev approximations for integration. The numerical examples illustrate the robustness, accuracy and efficiency of the proposed technique.
引用
收藏
页码:883 / 895
页数:13
相关论文
共 23 条
[1]  
[Anonymous], 2018, Mathematical Theory of Optimal Processes
[2]  
[Anonymous], IMA VOLUME MATH APPL
[3]   Second-order Runge-Kutta approximations in control constrained optimal control [J].
Dontchev, AL ;
Hager, WW ;
Veliov, VM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (01) :202-226
[4]   Numerical solution for large-scale systems with general multiple linear-quadratic structure [J].
El-Kady, M .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (05) :615-624
[5]  
ELBARBARY EME, IN PRESS APPL MATH C
[6]  
ELBARBARY EME, UNPUB J COMPUTATIONA
[7]   CHEBYSHEV SOLUTION OF DIFFERENTIAL, INTEGRAL AND INTEGRO-DIFFERENTIAL EQUATIONS [J].
ELGENDI, SE .
COMPUTER JOURNAL, 1969, 12 (03) :282-&
[8]   A CHEBYSHEV-APPROXIMATION FOR SOLVING OPTIMAL-CONTROL PROBLEMS [J].
ELGINDY, TM ;
ELHAWARY, HM ;
SALIM, MS ;
ELKADY, M .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (06) :35-45
[9]  
ELGINDY TM, 1995, J EGYPT MATH SCIO, V3, P17
[10]   <bold>Statistical Model Order Reduction for Interconnect Circuits Considering Spatial Correlations</bold> [J].
Fan, Jeffrey ;
Mi, Ning ;
Tan, Sheldon X. -D. ;
Cai, Yici ;
Hong, Xianlong .
2007 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, VOLS 1-3, 2007, :1508-+