Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation

被引:254
作者
Qiu, Ruihong [1 ]
Huang, Zi [1 ]
Yin, Hongzhi [1 ]
Wang, Zijian [1 ]
机构
[1] Univ Queensland, Brisbane, Qld, Australia
来源
WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING | 2022年
关键词
sequential recommendation; contrastive learning; NETWORKS;
D O I
10.1145/3488560.3498433
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advancements of sequential deep learning models such as Transformer and BERT have significantly facilitated the sequential recommendation. However, according to our study, the distribution of item embeddings generated by these models tends to degenerate into an anisotropic shape, which may result in high semantic similarities among embeddings. In this paper, both empirical and theoretical investigations of this representation degeneration problem are first provided, based on which a novel recommender model DuoRec is proposed to improve the item embeddings distribution. Specifically, in light of the uniformity property of contrastive learning, a contrastive regularization is designed for DuoRec to reshape the distribution of sequence representations. Given the convention that the recommendation task is performed by measuring the similarity between sequence representations and item embeddings in the same space via dot product, the regularization can be implicitly applied to the item embedding distribution. Existing contrastive learning methods mainly rely on data level augmentation for user-item interaction sequences through item cropping, masking, or reordering and can hardly provide semantically consistent augmentation samples. In DuoRec, a model-level augmentation is proposed based on Dropout to enable better semantic preserving. Furthermore, a novel sampling strategy is developed, where sequences having the same target item are chosen hard positive samples. Extensive experiments conducted on five datasets demonstrate the superior performance of the proposed DuoRec model compared with baseline methods. Visualization results of the learned representations validate that DuoRec can largely alleviate the representation degeneration problem.
引用
收藏
页码:813 / 823
页数:11
相关论文
共 58 条
[1]  
[Anonymous], 2019, ICML
[2]  
Bis Daniel, 2021, P 2021 C N AM CHAPTE
[3]  
Chen T, 2020, PR MACH LEARN RES, V119
[4]   Sequence-Aware Factorization Machines for Temporal Predictive Analytics [J].
Chen, Tong ;
Yin, Hongzhi ;
Quoc Viet Hung Nguyen ;
Peng, Wen-Chih ;
Li, Xue ;
Zhou, Xiaofang .
2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, :1405-1416
[5]  
Chen Xinlei, 2020, CORR ABS201110566
[6]  
Chung J., 2014, NIPS 2014 WORKSH DEE
[7]  
Ethayarajh K, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P1696
[8]  
Gao Jun, 2019, P INT C LEARNING REP
[9]  
Gao T., 2021, ABS210408821 CORR
[10]  
Gutmann MU, 2012, J MACH LEARN RES, V13, P307