Investigation of structural, electronic, magnetic, elastic and thermodynamic properties of Mn3GaN antiperovskite by first principle and Monte Carlo simulations

被引:4
作者
Azouaoui, A. [1 ]
Benzakour, N. [1 ]
Hourmatallah, A. [1 ,2 ]
Bouslykhane, K. [1 ]
机构
[1] Univ Sidi Mohammed Ben Abdellah, Fac Sci Dhar Mahraz, Lab Phys Solide, BP 1796, Fes, Morocco
[2] Ecole Normale Super, Fes, Morocco
关键词
Cubic anti-perovskite Mn3GaN; elastic properties; thermodynamic properties; Monte Carlo simulation; critical temperature; NEGATIVE THERMAL-EXPANSION;
D O I
10.1080/14786435.2021.1917782
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Structural, electronic, magnetic, elastic and thermodynamic properties of Mn3GaN anti-perovskite have been studied using the first-principles calculations based on density functional theory (DFT) and Monte Carlo simulations within the Ising model. The structural investigation exposes the antiferromagnetic configuration stability of the compound. Also, the density of states (DOS) and band structure calculations show a metallic behaviour of Mn3GaN. The computed elastic constants, phonon dispersion and density phonon states calculations demonstrate that the Mn3GaN compound is mechanically and dynamically stable. The calculated results of Poisson's ratio, Pugh's ratio and Cauchy pressure show that the Mn3GaN is ductile material with a metallic bond. The thermodynamic parameters like heat capacity, Debye and melting temperature have also been calculated. The exchange coupling of Mn3GaN has been calculated to obtain the critical temperature (TN) from Monte Carlo calculations. The obtained value of TN (288 K) is in good agreement with other experimental and theoretical works.
引用
收藏
页码:1587 / 1601
页数:15
相关论文
共 42 条
[1]   Magnetostriction in Mn3CuN [J].
Asano, K. ;
Koyama, K. ;
Takenaka, K. .
APPLIED PHYSICS LETTERS, 2008, 92 (16)
[2]  
Ashcroft N.W., 1976, SOLID STATE PHYS, V120
[3]   Structural, Electronic, and Magnetic Properties of Mn4N Perovskite: Density Functional Theory Calculations and Monte Carlo Study [J].
Azouaoui, A. ;
El Haoua, M. ;
Salmi, S. ;
El Grini, A. ;
Benzakour, N. ;
Hourmatallah, A. ;
Bouslykhane, K. .
JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2020, 33 (05) :1507-1512
[4]   First Principles Investigation of the Elastic, Optoelectronic and Thermal Properties of XRuSb: (X = V, Nb, Ta) Semi-Heusler Compounds Using the mBJ Exchange Potential [J].
Bencherif, K. ;
Yakoubi, A. ;
Della, N. ;
Abid, O. Miloud ;
Khachai, H. ;
Ahmed, R. ;
Khenata, R. ;
Bin Omran, S. ;
Gupta, S. K. ;
Murtaza, G. .
JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (07) :3479-3490
[5]   NEUTRON DIFFRACTION IN MN3GAN [J].
BERTAUT, EF ;
FRUCHART, D ;
BOUCHAUD, JP ;
FRUCHART, R .
SOLID STATE COMMUNICATIONS, 1968, 6 (05) :251-&
[6]  
Born M., 1955, Dynamical Theory of Crystal Lattices, V23, P474, DOI 10.1119/1.1934059
[7]   A CALCULATION OF THE BULK MODULUS OF POLYCRYSTALLINE MATERIALS [J].
CHANDRASEKAR, S ;
SANTHANAM, S .
JOURNAL OF MATERIALS SCIENCE, 1989, 24 (12) :4265-4267
[8]   Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3 [J].
Chi, EO ;
Kim, WS ;
Hur, NH .
SOLID STATE COMMUNICATIONS, 2001, 120 (7-8) :307-310
[9]   A combined DFT, DFT plus U and mBJ investigation on electronic structure, magnetic, mechanical and thermodynamics of double perovskite Ba2ZnOsO6 [J].
Dar, Sajad Ahmad ;
Srivastava, Vipul ;
Sakalle, Umesh Kumar ;
Parey, Vanshree ;
Pagare, Gitanjali .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2018, 236 :217-224
[10]  
Frantsevich I. N., 1983, Naukova Dumka, P60