Inexact primal-dual gradient projection methods for nonlinear optimization on convex set

被引:8
|
作者
Zhang, Fan [1 ,2 ,3 ]
Wang, Hao [1 ]
Wang, Jiashan [4 ]
Yang, Kai [5 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
[4] Univ Washington, Dept Math, Washington, DC USA
[5] Tongji Univ, Dept Comp Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Inexact optimization; gradient projection methods; l(1)-ball projection; first-order methods; proximal methods; ALGORITHMS; SPARSITY; SIMPLEX; POINT;
D O I
10.1080/02331934.2019.1696338
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a novel primal-dual inexact gradient projection method for nonlinear optimization problems with convex-set constraint. This method only needs inexact computation of the projections onto the convex set for each iteration, consequently reducing the computational cost for projections per iteration. This feature is attractive especially for solving problems where the projections are computationally not easy to calculate. Global convergence guarantee and ergodic convergence rate of the optimality residual are provided under loose assumptions. We apply our proposed strategy to -ball constrained problems. Numerical results exhibit that our inexact gradient projection methods for solving -ball constrained problems are more efficient than the exact methods.
引用
收藏
页码:2339 / 2365
页数:27
相关论文
共 50 条
  • [41] A Universal Accelerated Primal-Dual Method for Convex Optimization Problems
    Luo, Hao
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 201 (01) : 280 - 312
  • [42] Primal-dual stochastic distributed algorithm for constrained convex optimization
    Niu, Youcheng
    Wang, Haijing
    Wang, Zheng
    Xia, Dawen
    Li, Huaqing
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (16): : 9763 - 9787
  • [43] A Golden Ratio Primal-Dual Algorithm for Structured Convex Optimization
    Chang, Xiaokai
    Yang, Junfeng
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (02)
  • [44] Distributed Primal-Dual Method for Convex Optimization With Coupled Constraints
    Su, Yanxu
    Wang, Qingling
    Sun, Changyin
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 523 - 535
  • [45] Primal-dual subgradient method for constrained convex optimization problems
    Metel, Michael R.
    Takeda, Akiko
    OPTIMIZATION LETTERS, 2021, 15 (04) : 1491 - 1504
  • [46] Parallel Primal-Dual Method with Linearization for Structured Convex Optimization
    Zhang, Xiayang
    Tang, Weiye
    Wang, Jiayue
    Zhang, Shiyu
    Zhang, Kangqun
    AXIOMS, 2025, 14 (02)
  • [47] Primal-Dual Algorithms for Convex Optimization via Regret Minimization
    Nam Ho-Nguyen
    Kilinc-Karzan, Fatma
    IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (02): : 284 - 289
  • [48] Towards Totally Asynchronous Primal-Dual Convex Optimization in Blocks
    Hendrickson, Katherine R.
    Hale, Matthew T.
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 3663 - 3668
  • [49] Primal-dual subgradient method for constrained convex optimization problems
    Michael R. Metel
    Akiko Takeda
    Optimization Letters, 2021, 15 : 1491 - 1504
  • [50] Can Primal Methods Outperform Primal-Dual Methods in Decentralized Dynamic Optimization?
    Yuan, Kun
    Xu, Wei
    Ling, Qing
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 4466 - 4480