Inexact primal-dual gradient projection methods for nonlinear optimization on convex set

被引:8
作者
Zhang, Fan [1 ,2 ,3 ]
Wang, Hao [1 ]
Wang, Jiashan [4 ]
Yang, Kai [5 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
[4] Univ Washington, Dept Math, Washington, DC USA
[5] Tongji Univ, Dept Comp Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Inexact optimization; gradient projection methods; l(1)-ball projection; first-order methods; proximal methods; ALGORITHMS; SPARSITY; SIMPLEX; POINT;
D O I
10.1080/02331934.2019.1696338
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a novel primal-dual inexact gradient projection method for nonlinear optimization problems with convex-set constraint. This method only needs inexact computation of the projections onto the convex set for each iteration, consequently reducing the computational cost for projections per iteration. This feature is attractive especially for solving problems where the projections are computationally not easy to calculate. Global convergence guarantee and ergodic convergence rate of the optimality residual are provided under loose assumptions. We apply our proposed strategy to -ball constrained problems. Numerical results exhibit that our inexact gradient projection methods for solving -ball constrained problems are more efficient than the exact methods.
引用
收藏
页码:2339 / 2365
页数:27
相关论文
共 50 条
  • [21] A NOTE ON THE LINEAR CONVERGENCE OF GENERALIZED PRIMAL-DUAL HYBRID GRADIENT METHODS
    Wang, Kai
    Wang, Qun
    PACIFIC JOURNAL OF OPTIMIZATION, 2023, 19 (04): : 551 - 567
  • [22] A Decentralized Primal-Dual Framework for Non-Convex Smooth Consensus Optimization
    Mancino-Ball, Gabriel
    Xu, Yangyang
    Chen, Jie
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 525 - 538
  • [23] Coupled-decompositions: exploiting primal-dual interactions in convex optimization problems
    Morell, Antoni
    Lopez Vicario, Jose
    Seco-Granados, Gonzalo
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2013, : 1 - 18
  • [24] ON THE CONVERGENCE OF STOCHASTIC PRIMAL-DUAL HYBRID GRADIENT
    Alacaoglu, Ahmet
    Fercoq, Olivier
    Cevher, Volkan
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (02) : 1288 - 1318
  • [25] An adaptive primal-dual framework for nonsmooth convex minimization
    Quoc Tran-Dinh
    Alacaoglu, Ahmet
    Fercoq, Olivier
    Cevher, Volkan
    MATHEMATICAL PROGRAMMING COMPUTATION, 2020, 12 (03) : 451 - 491
  • [26] A Preconditioning Technique for First-Order Primal-Dual Splitting Method in Convex Optimization
    Wen, Meng
    Peng, Jigen
    Tang, Yuchao
    Zhu, Chuanxi
    Yue, Shigang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [27] A new primal-dual hybrid gradient scheme for solving minimax problems with nonlinear term
    Wu, Renkai
    Liu, Zexian
    APPLIED NUMERICAL MATHEMATICS, 2025, 210 : 147 - 164
  • [28] On Iteration Complexity of a First-Order Primal-Dual Method for Nonlinear Convex Cone Programming
    Zhao, Lei
    Zhu, Dao-Li
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2022, 10 (01) : 53 - 87
  • [29] Market Equilibrium via a Primal-Dual Algorithm for a Convex Program
    Devanur, Nikhil R.
    Papadimitriou, Christos H.
    Saberi, Amin
    Vazirani, Vijay V.
    JOURNAL OF THE ACM, 2008, 55 (05)
  • [30] Primal-dual interior-point methods for PDE-constrained optimization
    Ulbrich, Michael
    Ulbrich, Stefan
    MATHEMATICAL PROGRAMMING, 2009, 117 (1-2) : 435 - 485