A point process describing the component sizes in the critical window of the random graph evolution

被引:10
作者
Janson, Svante
Spencer, Joel
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[2] NYU, Courant Inst, New York, NY 10012 USA
关键词
D O I
10.1017/S0963548306008327
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study a point process describing the asymptotic behaviour of sizes of the largest components of the random graph G(n, p) in the critical window, that is, for p = n(-1) + lambda n(-4/3), where;. is a fixed real number. In particular, we show that this point process has a surprising rigidity. Fluctuations in the large values will be balanced by opposite fluctuations in the small values such that the sum of the values larger than a small E: (a scaled version of the number of vertices in components of size greater than epsilon n(2/3)) is almost constant.
引用
收藏
页码:631 / 658
页数:28
相关论文
共 26 条
[11]  
JANSON S, 2000, RANDOM GRAPHS WILEY
[12]  
Janson S., CAMBRIDGE TEXTS MATH
[13]  
KALLENBERG O, 1983, POINT PROCESSES AKAD
[14]  
Kallenberg O, 2002, FDN MODERN PROBABILI
[15]  
Leadbetter M. R., 1983, Springer Series in Statistics, DOI 10.1007/978-1-4612-5449-2
[16]   THE BROWNIAN EXCURSION AREA - NUMERICAL-ANALYSIS [J].
LOUCHARD, G .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1984, 10 (06) :413-417
[17]   KAC FORMULA, LEVY LOCAL TIME AND BROWNIAN EXCURSION [J].
LOUCHARD, G .
JOURNAL OF APPLIED PROBABILITY, 1984, 21 (03) :479-499
[18]   THE STRUCTURE OF A RANDOM GRAPH AT THE POINT OF THE PHASE-TRANSITION [J].
LUCZAK, T ;
PITTEL, B ;
WIERMAN, JC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 341 (02) :721-748
[19]   THE MULTIPLICATIVE PROCESS [J].
OTTER, R .
ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (02) :206-224
[20]  
PERES Y, 2005, COMMUNICATION