Acyclic Edge Coloring of Chordal Graphs with Bounded Degree

被引:3
作者
Ma, Yulai [1 ,2 ]
Shi, Yongtang [1 ,2 ]
Wang, Weifan [3 ]
机构
[1] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Acyclic edge coloring; Chordal graphs; Simplicial vertices; Maximum degree; 4-REGULAR GRAPHS;
D O I
10.1007/s00373-021-02378-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. It was conjectured that every simple graph G with maximum degree Delta is acyclically edge-(Delta + 2)-colorable. In this paper, we confirm the conjecture for chordal graphs G with Delta <= 6.
引用
收藏
页码:2621 / 2636
页数:16
相关论文
共 17 条
[1]   Enumerating minimal dominating sets in chordal graphs [J].
Abu-Khzam, Faisal N. ;
Heggernes, Pinar .
INFORMATION PROCESSING LETTERS, 2016, 116 (12) :739-743
[2]   Acyclic edge colorings of graphs [J].
Alon, N ;
Sudakov, B ;
Zaks, A .
JOURNAL OF GRAPH THEORY, 2001, 37 (03) :157-167
[3]   ACYCLIC COLORING OF GRAPHS [J].
ALON, N ;
MCDIARMID, C ;
REED, B .
RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (03) :277-288
[4]   Acyclic edge coloring of subcubic graphs [J].
Basavaraju, Manu ;
Chandran, L. Sunil .
DISCRETE MATHEMATICS, 2008, 308 (24) :6650-6653
[5]   ACYCLIC EDGE-COLORING OF PLANAR GRAPHS [J].
Basavaraju, Manu ;
Chandran, L. Sunil ;
Cohen, Nathann ;
Havet, Frederic ;
Mueller, Tobias .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (02) :463-478
[6]   Acyclic edge coloring of 2-degenerate graphs [J].
Basavaraju, Manu ;
Chandran, L. Sunil .
JOURNAL OF GRAPH THEORY, 2012, 69 (01) :1-27
[7]   Acyclic Edge Coloring of Graphs with Maximum Degree 4 [J].
Basavaraju, Manu ;
Chandran, L. Sunill .
JOURNAL OF GRAPH THEORY, 2009, 61 (03) :192-209
[8]   Acyclic edge-coloring using entropy compression [J].
Esperet, Louis ;
Parreau, Aline .
EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (06) :1019-1027
[9]  
Fiamtik I., 1978, MATH SLOVACA, V28, P139
[10]   Acyclic edge coloring through the Lovasz Local Lemma [J].
Giotis, Ioannis ;
Kirousis, Lefteris ;
Psaromiligkos, Kostas I. ;
Thilikos, Dimitrios M. .
THEORETICAL COMPUTER SCIENCE, 2017, 665 :40-50