Nanotechnology synergized immunoengineering for cancer

被引:14
作者
Chauhan, Deepak S. [1 ,2 ]
Dhasmana, Anupam [1 ]
Laskar, Partha [1 ]
Prasad, Rajendra [2 ]
Jain, Nishant K. [2 ]
Srivastava, Rohit [2 ]
Jaggi, Meena [1 ,3 ]
Chauhan, Subhash C. [1 ,3 ]
Yallapu, Murali M. [1 ,3 ]
机构
[1] Univ Texas Rio Grande Valley, Sch Med, Dept Immunol & Microbiol, Mcallen, TX 78504 USA
[2] Indian Inst Technol, Dept Biosci & Bioengn, Mumbai 400076, Maharashtra, India
[3] Univ Texas Rio Grande Valley, Sch Med, South Texas Ctr Excellence Canc Res, Mcallen, TX 78504 USA
关键词
Nanoparticles; Immunotherapy; Adjuvants; Biomaterials; Vaccines; Cancer treatment; Tumor; Imaging; Theranostic; IMMUNE CHECKPOINT BLOCKADE; IMMUNOGENIC CELL-DEATH; IN-SITU VACCINATION; TUMOR-ASSOCIATED MACROPHAGES; UP-CONVERSION NANOPARTICLES; IRON-OXIDE NANOPARTICLES; NATURAL-KILLER-CELLS; ENGINEERED T-CELLS; PHOTODYNAMIC THERAPY; ANTITUMOR IMMUNITY;
D O I
10.1016/j.ejpb.2021.03.010
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Novel strategies modulating the immune system yielded enhanced anticancer responses and improved cancer survival. Nevertheless, the success rate of immunotherapy in cancer treatment has been below expectation(s) due to unpredictable efficacy and off-target effects from systemic dosing of immunotherapeutic(s). As a result, there is an unmet clinical need for improving conventional immunotherapy. Nanotechnology offers several new strategies, multimodality, and multiplex biological targeting advantage to overcome many of these challenges. These efforts enable programming the pharmacodynamics, pharmacokinetics, and delivery of immunomodulatory agents/co-delivery of compounds to prime at the tumor sites for improved therapeutic benefits. This review provides an overview of the design and clinical principles of biomaterials driven nanotechnology and their potential use in personalized nanomedicines, vaccines, localized tumor modulation, and delivery strategies for cancer immunotherapy. In this review, we also summarize the latest highlights and recent advances in combinatorial therapies availed in the treatment of cold and complicated tumors. It also presents key steps and parameters implemented for clinical success. Finally, we analyse, discuss, and provide clinical perspectives on the integrated opportunities of nanotechnology and immunology to achieve synergistic and durable responses in cancer treatment.
引用
收藏
页码:72 / 101
页数:30
相关论文
共 307 条
[1]   Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles [J].
Abadeer, Nardine S. ;
Murphy, Catherine J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (09) :4691-4716
[2]   Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors [J].
Adalsteinsson, Viktor A. ;
Ha, Gavin ;
Freeman, Samuel S. ;
Choudhury, Atish D. ;
Stover, Daniel G. ;
Parsons, Heather A. ;
Gydush, Gregory ;
Reed, Sarah C. ;
Rotem, Denisse ;
Rhoades, Justin ;
Loginov, Denis ;
Livitz, Dimitri ;
Rosebrock, Daniel ;
Leshchiner, Ignaty ;
Kim, Jaegil ;
Stewart, Chip ;
Rosenberg, Mara ;
Francis, Joshua M. ;
Zhang, Cheng-Zhong ;
Cohen, Ofir ;
Oh, Coyin ;
Ding, Huiming ;
Polak, Paz ;
Lloyd, Max ;
Mahmud, Sairah ;
Helvie, Karla ;
Merrill, Margaret S. ;
Santiago, Rebecca A. ;
O'Connor, Edward P. ;
Jeong, Seong H. ;
Leeson, Rachel ;
Barry, Rachel M. ;
Kramkowski, Joseph F. ;
Zhang, Zhenwei ;
Polacek, Laura ;
Lohr, Jens G. ;
Schleicher, Molly ;
Lipscomb, Emily ;
Saltzman, Andrea ;
Oliver, Nelly M. ;
Marini, Lori ;
Waks, Adrienne G. ;
Harshman, Lauren C. ;
Tolaney, Sara M. ;
Van Allen, Eliezer M. ;
Winer, Eric P. ;
Lin, Nancy U. ;
Nakabayashi, Mari ;
Taplin, Mary-Ellen ;
Johannessen, Cory M. .
NATURE COMMUNICATIONS, 2017, 8
[3]   Systemic siRNA Nanoparticle-Based Drugs Combined with Radiofrequency Ablation for Cancer Therapy [J].
Ahmed, Muneeb ;
Kumar, Gaurav ;
Navarro, Gemma ;
Wang, Yuanguo ;
Gourevitch, Svetlana ;
Moussa, Marwan H. ;
Rozenblum, Nir ;
Levchenko, Tatyana ;
Galun, Eithan ;
Torchilin, Vladimir P. ;
Goldberg, S. Nahum .
PLOS ONE, 2015, 10 (07)
[4]   Interferon in the treatment of hairy-cell leukemia [J].
Ahmed, S ;
Rai, KR .
BEST PRACTICE & RESEARCH CLINICAL HAEMATOLOGY, 2003, 16 (01) :69-81
[5]   Identification of Immune Factors Regulating Antitumor Immunity Using Polymeric Vaccines with Multiple Adjuvants [J].
Ali, Omar A. ;
Verbeke, Catia ;
Johnson, Chris ;
Sands, R. Warren ;
Lewin, Sarah A. ;
White, Des ;
Doherty, Edward ;
Dranoff, Glenn ;
Mooney, David J. .
CANCER RESEARCH, 2014, 74 (06) :1670-1681
[6]   Inflammatory Cytokines Presented from Polymer Matrices Differentially Generate and Activate DCs In Situ [J].
Ali, Omar A. ;
Tayalia, Prakriti ;
Shvartsman, Dmitry ;
Lewin, Sarah ;
Mooney, David J. .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (36) :4621-4628
[7]   The efficacy of intracranial PLG-based vaccines is dependent on direct implantation into brain tissue [J].
Ali, Omar A. ;
Doherty, Edward ;
Bell, William J. ;
Fradet, Tracie ;
Hudak, Jebecka ;
Laliberte, Marie-Therese ;
Mooney, David J. ;
Emerich, Dwaine F. .
JOURNAL OF CONTROLLED RELEASE, 2011, 154 (03) :249-257
[8]  
Ali OA, 2009, NAT MATER, V8, P151, DOI [10.1038/NMAT2357, 10.1038/nmat2357]
[9]   PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome [J].
Alsaab, Hashem O. ;
Sau, Samaresh ;
Alzhrani, Rami ;
Tatiparti, Katyayani ;
Bhise, Ketki ;
Kashaw, Sushil K. ;
Iyer, Arun K. .
FRONTIERS IN PHARMACOLOGY, 2017, 8
[10]   STAT3 Silencing in Dendritic Cells by siRNA Polyplexes Encapsulated in PLGA Nanoparticles for the Modulation of Anticancer Immune Response [J].
Alshamsan, Aws ;
Haddadi, Azita ;
Hamdy, Samar ;
Samuel, John ;
El-Kadi, Ayman O. S. ;
Uludag, Hasan ;
Lavasanifar, Afsaneh .
MOLECULAR PHARMACEUTICS, 2010, 7 (05) :1643-1654