Improved Performance of Polymer Electrolyte Membrane Fuel Cells with Modified Microporous Layer Structures

被引:22
作者
Alrwashdeh, Saad S. [1 ,2 ,3 ]
Manke, Ingo [1 ]
Markoetter, Henning [1 ]
Haussmann, Jan [4 ]
Arlt, Tobias [1 ]
Hilger, Andre [1 ]
Al-Falahat, A. M. [1 ,2 ,3 ]
Klages, Merle [4 ]
Scholta, Joachim [4 ]
Banhart, John [1 ,3 ]
机构
[1] Helmholtz Ctr Berlin Mat & Energy, Hahn Meitner Pl 1, D-14109 Berlin, Germany
[2] Mutah Univ, Dept Mech Engn, Fac Engn, POB 7, Al Karak 61710, Jordan
[3] Tech Univ Berlin, Inst Mat Sci & Technol, D-10623 Berlin, Germany
[4] Zentrum Sonnenenergie & Wasserstoff Forsch Baden, Helmholtzstr 8, D-89081 Ulm, Germany
关键词
cell performance; fuel cells; microporous materials; synchroton X-ray tomography; water distribution; X-RAY RADIOGRAPHY; LIQUID WATER TRANSPORT; GAS-DIFFUSION LAYERS; RESOLUTION NEUTRON-RADIOGRAPHY; FIBER-BASED MATERIALS; H-1-NMR MICROSCOPY; TOMOGRAPHIC MICROSCOPY; MODEL DEVELOPMENT; IMAGING TECHNIQUE; POROUS LAYERS;
D O I
10.1002/ente.201700005
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A possible method to improve membrane humidity conditions in polymer electrolyte membrane fuel cells and, therefore, the cell performance is the optimization of microporous layer (MPL) structures. In this work, water transport in modified MPL materials in polymer electrolyte membrane fuel cells (PEMFCs) was investigated by inoperando synchrotron X-ray tomography. Three different types of MPLs are compared: A reference standard MPL material, an MPL material with a special wavy structure, and an MPL with randomly distributed holes. We found a strong impact of the modified MPL structure on the water distribution at operating temperatures of 40 and 55 degrees C and an increase of cell performance up to 14% compared to the reference cell. We assume the water distribution at the membrane to be responsible for the performance increase and provide a detailed discussion.
引用
收藏
页码:1612 / 1618
页数:7
相关论文
共 60 条
[1]   The influence of porous transport layer modifications on the water management in polymer electrolyte membrane fuel cells [J].
Alink, R. ;
Haussmann, J. ;
Markoetter, H. ;
Schwager, M. ;
Manke, I. ;
Gerteisen, D. .
JOURNAL OF POWER SOURCES, 2013, 233 :358-368
[2]   Investigation of water transport dynamics in polymer electrolyte membrane fuel cells based on high porous micro porous layers [J].
Alrwashdeh, Saad S. ;
Markoetter, Henning ;
Haussmann, Jan ;
Arlt, Tobias ;
Klages, Merle ;
Scholta, Joachim ;
Banhart, John ;
Manke, Ingo .
ENERGY, 2016, 102 :161-165
[3]  
Arif M., 2006, 5 NEUTRON IMAGING ST, P875
[4]   Investigation of the local catalyst distribution in an aged direct methanol fuel cell MEA by means of differential synchrotron X-ray absorption edge imaging with high energy resolution [J].
Arlt, Tobias ;
Manke, Ingo ;
Wippermann, Klaus ;
Riesemeier, Heinrich ;
Mergel, Juergen ;
Banhart, John .
JOURNAL OF POWER SOURCES, 2013, 221 :210-216
[5]  
Banhart J., 2008, ADV TOMOGRAPHIC METH
[6]   Numerical and microfluidic pore networks: Towards designs for directed water transport in GDLs [J].
Bazylak, A. ;
Berejnov, V. ;
Markicevic, B. ;
Sinton, D. ;
Djilali, N. .
ELECTROCHIMICA ACTA, 2008, 53 (26) :7630-7637
[7]   Neutron imaging technique for in situ measurement of water transport gradients within Nafion in polymer electrolyte fuel cells [J].
Bellows, RJ ;
Lin, MY ;
Arif, M ;
Thompson, AK ;
Jacobson, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) :1099-1103
[8]   A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell [J].
Berning, T ;
Djilali, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :A1589-A1598
[9]   In situ observation of the water distribution across a PEFC using high resolution neutron radiography [J].
Boillat, P. ;
Kramer, D. ;
Seyfang, B. C. ;
Frei, G. ;
Lehmann, E. ;
Scherer, G. G. ;
Wokaun, A. ;
Ichikawa, Y. ;
Tasaki, Y. ;
Shinohara, K. .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (04) :546-550
[10]  
Carrette L, 2001, FUEL CELLS, V1, P5, DOI 10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO