How accurate is the streamline-diffusion FEM inside characteristic (boundary and interior) layers?

被引:17
作者
Kopteva, N [1 ]
机构
[1] Univ Limerick, Dept Math & Stat, Limerick, Ireland
基金
俄罗斯基础研究基金会;
关键词
convection-diffusion; SDFEM; singular perturbation; parabolic boundary layer; interior layer; layer-adapted meshes;
D O I
10.1016/j.cma.2004.05.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two model two-dimensional singularly perturbed convection-diffusion problems are considered whose solutions may have characteristic boundary and interior layers. They are solved numerically by the streamline-diffusion finite element method using piecewise linear or bilinear elements. We investigate how accurate the computed solution is in characteristic-layer regions if anisotropic layer-adapted meshes are used. It is shown that the streamline-diffusion formulation may, in the maximum norm, imply only first-order accuracy in characteristic-layer regions. Numerical experiments are presented that support our theoretical predictions. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:4875 / 4889
页数:15
相关论文
共 18 条
  • [1] Abramowitz M, 1964, NATL BUREAU STANDARD, V55
  • [2] [Anonymous], 1992, GRID APPROXIMATION S
  • [3] CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS
    BREZZI, F
    RUSSO, A
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1994, 4 (04) : 571 - 587
  • [4] Farrell P.A., 2000, Applied Mathematics (Boca Raton)
  • [5] Hughes TJR, 1979, Finite element methods for convection dominated flows, P34
  • [6] ILIN AM, 1975, MAT SBORNIK, V96, P568
  • [7] JOHNSON C, 1987, MATH COMPUT, V49, P25, DOI 10.1090/S0025-5718-1987-0890252-8
  • [8] KOPTEVA NV, 2001, 19 BIENN DUND C NUM
  • [9] Linss T, 2001, NUMER MATH, V87, P457, DOI 10.1007/s002110000209
  • [10] LINSS T, MATHNM1102 TU DRESD