Numerical analysis of a fast integration method for highly oscillatory functions

被引:58
作者
Xiang, Shuhuang [1 ]
机构
[1] Cent S Univ, Dept Appl Math & Software, Changsha 410083, Hunan, Peoples R China
基金
日本学术振兴会;
关键词
oscillatory integrals; Bessel function; error bounds; collocation method;
D O I
10.1007/s10543-007-0127-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The integration of systems containing Bessel functions is a central point in many practical problems in physics, chemistry and engineering. This paper presents a new numerical analysis for the collocation method presented by Levin for integral(b)(a) f(x) S(rx)dx and gives more accurate error analysis about the integration of systems containing Bessel functions. The effectiveness and accuracy of the quadrature is tested for Bessel functions with large arguments.
引用
收藏
页码:469 / 482
页数:14
相关论文
共 11 条
[1]  
AHRAMOWITZ M, 1965, HDB MATH FUNCTIONS F
[2]  
DAVIS PJ, 1984, METHODS NUMERICAL IN
[3]  
Filon L., 1928, Proc. R. Soc. Edinb, V49, P38, DOI [10.1017/S0370164600026262, DOI 10.1017/S0370164600026262]
[4]   Efficient quadrature of highly oscillatory integrals using derivatives [J].
Iserles, A ;
Norsett, SP .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2057) :1383-1399
[5]   On quadrature methods for highly oscillatory integrals and their implementation [J].
Iserles, A ;
Norsett, S .
BIT NUMERICAL MATHEMATICS, 2004, 44 (04) :755-772
[6]  
Kress R, 1998, NUMERICAL ANAL
[7]   Analysis of a collocation method for integrating rapidly oscillatory functions [J].
Levin, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 78 (01) :131-138
[8]  
LEVIN D, 1982, MATH COMPUT, V38, P531, DOI 10.1090/S0025-5718-1982-0645668-7
[9]   Fast integration of rapidly oscillatory functions [J].
Levin, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 67 (01) :95-101
[10]  
Longman I. M., 1960, MATH COMPUT, V14, P53