Prediction of brain age from routine T2-weighted spin-echo brain magnetic resonance images with a deep convolutional neural network

被引:24
作者
Hwang, Inpyeong [1 ]
Yeon, Eung Koo [1 ]
Lee, Ji Ye [1 ]
Yoo, Roh-Eul [1 ,3 ]
Kang, Koung Mi [1 ]
Yun, Tae Jin [1 ]
Choi, Seung Hong [1 ,2 ,3 ]
Sohn, Chul-Ho [1 ,2 ,3 ]
Kim, Hyeonjin [3 ,4 ]
Kim, Ji-hoon [1 ]
机构
[1] Seoul Natl Univ Hosp, Dept Radiol, 101 Daehak Ro, Seoul 03080, South Korea
[2] Seoul Natl Univ, Dept Radiol, Coll Med, Seoul, South Korea
[3] Seoul Natl Univ, Inst Radiat Med, Med Res Ctr, Seoul, South Korea
[4] Seoul Natl Univ, Dept Med Sci, Coll Med, 103 Daehakro, Seoul 03080, South Korea
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会;
关键词
Brain aging; Brain age prediction; Brain magnetic resonance imaging; Deep convolutional neural network; WHITE-MATTER HYPERINTENSITIES; MRI; LESIONS;
D O I
10.1016/j.neurobiolaging.2021.04.015
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Our study investigated the feasibility and clinical relevance of brain age prediction using axial T2 weighted images (T2-WIs) with a deep convolutional neural network (CNN) algorithm. The CNN model was trained by 1,530 scans in our institution. The performance was evaluated by the mean absolute error (MAE) between the predicted brain age and the chronological age based on an internal test set ( n = 270) and an external test set ( n = 560). The ensemble CNN model showed an MAE of 4.22 years in the internal test set and 9.96 years in the external test set. Participants with grade 2-3 white matter hyperintensity (WMH) showed a higher corrected predicted age difference (PAD) than grade 0 WMH (posthoc p < 0.001). Participants diagnosed with diabetes mellitus also had a higher corrected PAD than those without diabetes (adjusted p = 0.048), although it showed no significant differences according to the diagnosis of hypertension or dyslipidemia. We suggest that routine clinical T2-WIs are feasible to predict brain age, and it might be clinically relevant according to the WMH grade and the presence of diabetes mellitus. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:78 / 85
页数:8
相关论文
共 35 条
[1]  
Amer Diabet Assoc, 2013, DIABETES CARE, V36, pS67, DOI [10.2337/dc14-S081, 10.2337/dc10-S011, 10.2337/dc13-S067, 10.2337/dc13-S011, 10.2337/dc11-S062, 10.2337/dc11-S011, 10.2337/dc10-S062, 10.2337/dc12-s011, 10.2337/dc12-s064]
[2]  
American College of Radiology (ACR), 2019, ACR-ASNR-SPR Practice Parameter for the Performance of Magnetic Resonance Imaging (Mri) of the Pediatric Spine
[3]   Biological Brain Age Prediction Using Cortical Thickness Data: A Large Scale Cohort Study [J].
Aycheh, Habtamu M. ;
Seong, Joon-Kyung ;
Shin, Jeong-Hyeon ;
Na, Duk L. ;
Kang, Byungkon ;
Seo, Sang W. ;
Sohn, Kyung-Ah .
FRONTIERS IN AGING NEUROSCIENCE, 2018, 10
[4]   Bias-adjustment in neuroimaging-based brain age frameworks: A robust scheme [J].
Beheshti, Iman ;
Nugent, Scott ;
Potvin, Olivier ;
Duchesne, Simon .
NEUROIMAGE-CLINICAL, 2019, 24
[5]   CEREBRAL WHITE-MATTER LESIONS, VASCULAR RISK-FACTORS, AND COGNITIVE FUNCTION IN A POPULATION-BASED STUDY - THE ROTTERDAM STUDY [J].
BRETELER, MMB ;
VANSWIETEN, JC ;
BOTS, ML ;
GROBBEE, DE ;
CLAUS, JJ ;
VANDENHOUT, JHW ;
VANHARSKAMP, F ;
TANGHE, HLJ ;
DEJONG, PTVM ;
VANGIJN, J ;
HOFMAN, A .
NEUROLOGY, 1994, 44 (07) :1246-1252
[6]   Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure [J].
Chobanian, AV ;
Bakris, GL ;
Black, HR ;
Cushman, WC ;
Green, LA ;
Izzo, JL ;
Jones, DW ;
Materson, BJ ;
Oparil, S ;
Wright, JT ;
Roccella, EJ .
HYPERTENSION, 2003, 42 (06) :1206-1252
[7]   Brain age predicts mortality [J].
Cole, J. H. ;
Ritchie, S. J. ;
Bastin, M. E. ;
Hernandez, M. C. Valdes ;
Maniega, S. Munoz ;
Royle, N. ;
Corley, J. ;
Pattie, A. ;
Harris, S. E. ;
Zhang, Q. ;
Wray, N. R. ;
Redmond, P. ;
Marioni, R. E. ;
Starr, J. M. ;
Cox, S. R. ;
Wardlaw, J. M. ;
Sharp, D. J. ;
Deary, I. J. .
MOLECULAR PSYCHIATRY, 2018, 23 (05) :1385-1392
[8]   Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers [J].
Cole, James H. ;
Franke, Katja .
TRENDS IN NEUROSCIENCES, 2017, 40 (12) :681-690
[9]   Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker [J].
Cole, James H. ;
Poudel, Rudra P. K. ;
Tsagkrasoulis, Dimosthenis ;
Caan, Matthan W. A. ;
Steves, Claire ;
Spector, Tim D. ;
Montana, Giovanni .
NEUROIMAGE, 2017, 163 :115-124
[10]   Commentary: Correction procedures in brain-age prediction [J].
de Lange, Ann-Marie G. ;
Cole, James H. .
NEUROIMAGE-CLINICAL, 2020, 26