A case study of methods of series summation: Kelvin-Helmholtz instability of finite amplitude

被引:2
作者
Khan, MAH
Tourigny, Y
Drazin, PG
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] Univ Bath, Sch Math Sci, Bath BA2 7AY, Avon, England
关键词
Kelvin-Helmholtz instability; Birkhoff-Rott equation; series summation; Hermite-Pade approximation;
D O I
10.1016/S0021-9991(03)00096-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We compute the singularities of the solution of the Birkhoff-Rott equation that governs the evolution of a planar periodic vortex sheet. Our approach uses the Taylor series obtained by Meiron et al. [J. Fluid Mech. 114 (1982) 283] for a flat sheet subject initially to a sinusoidal disturbance of amplitude a. The series is then summed by using various generalisations of the Pade method. We find approximate values for the location and type of the principal singularity as a ranges from zero to infinity. Finally, the results are used as a basis to guide the choice of methods of summing series arising from problems in fluid mechanics. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:212 / 229
页数:18
相关论文
共 19 条
[1]  
Baker G., 1996, Pade Approximants
[2]  
BIRKHOFF G, 1962, P S APPL MATH AM MAT, V13, P55, DOI DOI 10.1090/PSAPM/013/0137423
[3]  
*CLAY MATH I, 2000, MILL PRIZ PROBL
[4]   On the formation of Moore curvature singularities in vortex sheets [J].
Cowley, SJ ;
Baker, GR ;
Tanveer, S .
JOURNAL OF FLUID MECHANICS, 1999, 378 :233-267
[5]  
DRAZIN PG, 1996, SIAM J APPL MATH, V59, P1
[6]  
DRAZIN PG, 1996, REND CIRC MAT PA 2 S, V2, P209
[7]  
ELY JS, 1993, J COMPUT PHYS, V111, P275
[8]  
KHAN MAH, 2001, THESIS U BRISTOL
[10]   ANALYTIC STRUCTURE OF VORTEX SHEET DYNAMICS .1. KELVIN-HELMHOLTZ INSTABILITY [J].
MEIRON, DI ;
BAKER, GR ;
ORSZAG, SA .
JOURNAL OF FLUID MECHANICS, 1982, 114 (JAN) :283-298