Convergence of Kahler-Ricci flow

被引:104
作者
Tian, Gang [1 ]
Zhu, Xiaohua
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Peking Univ, Dept Math, Beijing 100871, Peoples R China
关键词
D O I
10.1090/S0894-0347-06-00552-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:675 / 699
页数:25
相关论文
共 20 条
[1]   COMPARISON OF 2 CAPACITIES IN CN [J].
ALEXANDER, HJ ;
TAYLOR, BA .
MATHEMATISCHE ZEITSCHRIFT, 1984, 186 (03) :407-417
[2]   A NEW CAPACITY FOR PLURISUBHARMONIC-FUNCTIONS [J].
BEDFORD, E ;
TAYLOR, BA .
ACTA MATHEMATICA, 1982, 149 (1-2) :1-40
[4]   Kahler-Ricci solitons on compact complex manifolds with C1(M)>0 [J].
Cao, HD ;
Tian, G ;
Zhu, XH .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (03) :697-719
[5]   Ricci flow on Kahler-Einstein manifolds [J].
Chen, XX ;
Tian, G .
DUKE MATHEMATICAL JOURNAL, 2006, 131 (01) :17-73
[6]   Ricci flow on Kahler-Einstein surfaces [J].
Chen, XX ;
Tian, G .
INVENTIONES MATHEMATICAE, 2002, 147 (03) :487-544
[7]   AN OBSTRUCTION TO THE EXISTENCE OF EINSTEIN KAHLER-METRICS [J].
FUTAKI, A .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :437-443
[8]  
Futaki A., 1988, LECT NOTES MATH, V1314
[9]  
HAMILTON RS, 1982, J DIFFER GEOM, V17, P255
[10]  
KLEINER B, 2003, NOTES PERELMANS PAPE