Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties

被引:164
作者
Ameloot, Nele [1 ]
Sleutel, Steven [1 ]
Das, K. C. [2 ]
Kanagaratnam, Jegajeevagan [1 ]
de Neve, Stefaan [1 ]
机构
[1] Univ Ghent, Dept Soil Management, Res Grp Soil Fertil & Nutr Management, B-9000 Ghent, Belgium
[2] Univ Georgia, Coll Engn, Biorefining & Carbon Cycling Program, Athens, GA 30602 USA
来源
GLOBAL CHANGE BIOLOGY BIOENERGY | 2015年 / 7卷 / 01期
关键词
Bacteria to fungi ratio; Biochar; black carbon; fumigation-extraction; microbial community structure; N dynamics; N mineralization; physicochemical fractionation; PLFA; pyrogenic organic matter; soil enzyme activity; SOM quality; MICROBIAL BIOMASS; NITROGEN MINERALIZATION; DAIRY MANURE; CARBON; AVAILABILITY; PYROLYSIS; FOREST; FRACTIONATION; COMMUNITIES; TEMPERATURE;
D O I
10.1111/gcbb.12119
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Four biochar types, produced by slow pyrolysis of poultry litter (PL) and pine chips (P) at 400 or 500 degrees C, were added to two adjacent soils with contrasting soil organic matter (SOM) content (8.9 vs. 16.1gCkg(-1)). The N mineralization rate was determined during 14-week incubations and assessments were made of the microbial biomass C, dehydrogenase activity, and the microbial community structure (PLFA-extraction). The addition of PL biochars increased the net N mineralization (i.e., compared to the control treatment) in both soils, while for treatments with P biochars net N immobilization was observed in both soils. Increasing the pyrolysis temperature of both feedstock types led to a decrease in net N mineralization. The ratio of Bacterial to Fungal PLFA biomarkers also increased with addition of biochars, and particularly in the case of the 500 degrees C biochars. Next to feedstock type and pyrolysis temperature, SOM content clearly affected the assessed soil biological parameters, viz. net N mineralization or immobilization, MBC and dehydrogenase activity were all greater in the H soil. This might be explained by an increased chance of physical contact between the microbial community activated by SOM mineralization upon incubation and discrete biochar particles. However, when considering the H soil's double C and N content, these responses were disproportionally small, which may be partly due to the L soil's, somewhat more labile SOM. Nonetheless, increasing SOM content and microbial biomass and activity generally appears to result in greater mineralization of biochar. Additionally, higher N mineralization after PL addition to the H soil with lower pH than the L soil can be due to the liming effect of the PL biochars.
引用
收藏
页码:135 / 144
页数:10
相关论文
共 52 条
[1]   Interactions between biochar stability and soil organisms: review and research needs [J].
Ameloot, N. ;
Graber, E. R. ;
Verheijen, F. G. A. ;
De Neve, S. .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2013, 64 (04) :379-390
[2]   Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils [J].
Ameloot, Nele ;
De Neve, Stefaan ;
Jegajeevagan, Kanagaratnam ;
Yildiz, Guray ;
Buchan, David ;
Funkuin, Yvonne Nkwain ;
Prins, Wolter ;
Bouckaert, Liesbeth ;
Sleutel, Steven .
SOIL BIOLOGY & BIOCHEMISTRY, 2013, 57 :401-410
[3]   Minimisation of organic matter disruption during particle-size fractionation of grassland epipedons [J].
Amelung, W ;
Zech, W .
GEODERMA, 1999, 92 (1-2) :73-85
[4]   Carbon, nitrogen, and sulfur pools in particle-size fractions as influenced by climate [J].
Amelung, W ;
Zech, W ;
Zhang, X ;
Follett, RF ;
Tiessen, H ;
Knox, E ;
Flach, KW .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1998, 62 (01) :172-181
[5]   II. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil [J].
Aon, MA ;
Colaneri, AC .
APPLIED SOIL ECOLOGY, 2001, 18 (03) :255-270
[6]   Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization [J].
Bailey, Vanessa L. ;
Fansler, Sarah J. ;
Smith, Jeffrey L. ;
Bolton, Harvey, Jr. .
SOIL BIOLOGY & BIOCHEMISTRY, 2011, 43 (02) :296-301
[7]   Heterotrophic microbial communities use ancient carbon following glacial retreat [J].
Bardgett, Richard D. ;
Richter, Andreas ;
Bol, Roland ;
Garnett, Mark H. ;
Baeumler, Rupert ;
Xu, Xingliang ;
Lopez-Capel, Elisa ;
Manning, David A. C. ;
Hobbs, Phil J. ;
Hartley, Ian R. ;
Wanek, Wolfgang .
BIOLOGY LETTERS, 2007, 3 (05) :487-490
[8]   Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities [J].
Bending, GD ;
Turner, MK ;
Jones, JE .
SOIL BIOLOGY & BIOCHEMISTRY, 2002, 34 (08) :1073-1082
[9]   Altered patterns of soil carbon substrate usage and heterotrophic respiration in a pine forest with elevated CO2 and N fertilization [J].
Billings, Sharon A. ;
Ziegler, Susan E. .
GLOBAL CHANGE BIOLOGY, 2008, 14 (05) :1025-1036
[10]   Responses of the bacterial and fungal biomass in a grassland soil to multi-year applications of dairy manure slurry and fertilizer [J].
Bittman, S ;
Forge, TA ;
Kowalenko, CG .
SOIL BIOLOGY & BIOCHEMISTRY, 2005, 37 (04) :613-623