Non-interacting Symmetric Single-Impurity Anderson Model on a Lattice at Finite Temperatures

被引:1
作者
Mahmoud, Zakaria M. M. [1 ,2 ]
Gebhard, Florian [1 ]
机构
[1] Philipps Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[2] King Khalid Univ, Phys Dept, Fac Sci, POB 960, Abha 61421, Saudi Arabia
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2019年 / 256卷 / 07期
关键词
Fermi systems; impurity scattering; screening at finite temperatures;
D O I
10.1002/pssb.201800670
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study the non-interacting single-impurity Anderson model (resonant level model) on a lattice at finite temperature as an illustrative example for an exactly solvable quantum-mechanical problem, and derive the free energy, various thermodynamic potentials (internal energy, entropy, magnetization), and response functions (specific heat, zero-field magnetic susceptibility). We calculate the magnetic screening cloud, and derive the corresponding correlation length in one dimension beyond which the correlations decay exponentially. The present results remain qualitatively applicable for the interacting single-impurity Anderson model when the energy scale < SIC > CYRILLIC CAPITAL LETTER GHE of the resonant-level model is replaced by the Kondo scale T-K.
引用
收藏
页数:15
相关论文
共 13 条
[1]   LOCALIZED MAGNETIC STATES IN METALS [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1961, 124 (01) :41-&
[2]  
[Anonymous], 1980, Statistical Physics Part 2
[3]  
[Anonymous], 1993, TheKondo Problem to Heavy Fermions
[4]  
[Anonymous], 2012, MATH VERS 9 0
[5]   Ground-state properties of the symmetric single-impurity Anderson model on a ring from density-matrix renormalization group, Hartree-Fock, and Gutzwiller theory [J].
Barcza, Gergely ;
Gebhard, Florian ;
Linneweber, Thorben ;
Legeza, Ors .
PHYSICAL REVIEW B, 2019, 99 (16)
[6]   Numerical renormalization group method for quantum impurity systems [J].
Bulla, Ralf ;
Costi, Theo A. ;
Pruschke, Thomas .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :395-450
[7]  
Fetter A. L., 1971, QUANTUM THEORY MANY
[8]   Real-space structure of the impurity screening cloud in the resonant level model [J].
Ghosh, Shreyoshi ;
Ribeiro, Pedro ;
Haque, Masudul .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
[9]  
Jeffrey A., 2007, Table of integrals, series, and products
[10]  
Mahan G.D., 2000, Physics of Solids and Liquids, V3rd