Affine arithmetic: concepts and applications

被引:236
作者
de Figueiredo, LH
Stolfi, J
机构
[1] Inst Matematica Pura & Aplicada, BR-22461320 Rio De Janeiro, Brazil
[2] Univ Estadual Campinas, Inst Comp, BR-13083970 Campinas, SP, Brazil
关键词
interval arithmetic; range analysis; dependency problem;
D O I
10.1023/B:NUMA.0000049462.70970.b6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Affine arithmetic is a model for self-validated numerical computation that keeps track of first-order correlations between computed and input quantities. We explain the main concepts in affine arithmetic and how it handles the dependency problem in standard interval arithmetic. We also describe some of its applications.
引用
收藏
页码:147 / 158
页数:12
相关论文
共 11 条
  • [1] Berz M., 1998, Reliable Computing, V4, P83, DOI 10.1023/A:1009958918582
  • [2] De Cusatis A. Jr., 1999, XII Brazilian Symposium on Computer Graphics and Image Processing (Cat. No.PR00481), P65, DOI 10.1109/SIBGRA.1999.805711
  • [3] Approximating parametric curves with strip trees using affine arithmetic
    De Figueiredo, LH
    Stolfi, J
    Velho, L
    [J]. SIBGRAPI 2002: XV BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 2002, : 163 - 170
  • [4] deFigueiredo L, 1997, MON 21 BRAZ MATH C I
  • [5] Adaptive enumeration of implicit surfaces with affine arithmetic
    deFigueiredo, LH
    Stolfi, J
    [J]. COMPUTER GRAPHICS FORUM, 1996, 15 (05) : 287 - 296
  • [6] deFigueiredo LH, 1996, PROC GRAPH INTERF, P168
  • [7] Hansen E., 1975, Interval Mathematics, volume 29 of Lecture Notes in Computer Science, V29, P7
  • [8] Sampling procedural shaders using affine arithmetic
    Hedrich, W
    Slusallek, P
    Seidel, HP
    [J]. ACM TRANSACTIONS ON GRAPHICS, 1998, 17 (03): : 158 - 176
  • [9] Heidrich W, 1998, GRAPHICS INTERFACE '98 - PROCEEDINGS, P8
  • [10] TUPPER JA, THESIS U TORONTO