In-situ generated TiO2/α-Fe2O3 heterojunction arrays for batch manufacturing of conductometric acetone gas sensors

被引:87
作者
Wang, Chen [1 ]
Wang, Yinglin [1 ]
Cheng, Pengfei [1 ]
Xu, Luping [1 ]
Dang, Fan [1 ]
Wang, Tianliang [1 ]
Lei, Zhaohui [1 ]
机构
[1] Xidian Univ, Sch Aerosp Sci & Technol, 266 Xifeng Rd, Xian 710126, Peoples R China
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2021年 / 340卷
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
In-situ generation; TiO2; alpha-Fe2O3; Gas sensor; Heterojunction; Acetone; SENSING PROPERTIES; ROOM-TEMPERATURE; SNO2; NANOSTRUCTURES; SELECTIVE DETECTION; FACILE SYNTHESIS; ZNO NANOSHEETS; NANOROD ARRAYS; CERAMIC TUBE; PERFORMANCE; NANOPARTICLES;
D O I
10.1016/j.snb.2021.129926
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A highly sensitive and selective acetone gas sensor has been fabricated successfully by designing n-n heterojunction consisting of TiO2 nanorods and alpha-Fe2O3 branches. The structure and morphology of the TiO2/alpha-Fe2O3 nanocomposites were examined via X-ray diffraction and scanning electron microscopy, respectively. TiO2 nanorod (with the diameter about 42 nm) arrays were in-situ generated on the surface of Al2O3 ceramic tubes by a simple hydrothermal process. In addition, alpha-Fe2O3 branches grew on TiO2 stems successfully in the second hydrothermal process. These nanorod branches had a relatively uniform length, which could be tunable by changing the concentration of iron precursor. The gas sensing properties of the pristine and alpha-Fe2O3 branches-decorated TiO2 nanorods sensors with regard to acetone gas were investigated. The results indicated that the sensor based on TiO2/alpha-Fe2O3 heterostructures measured at 225 degrees C had a higher response of 21.9 toward 100 ppm of acetone gas which was about 9 times higher than pristine TiO2 nanorods sensor. The dominant mechanism for enhanced sensing properties were discussed in detail with the semiconductor depletion layer model and TiO2/alpha-Fe2O3 n-n heterojunction theory.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Ni: Fe2O3, Mg: Fe2O3 and Fe2O3 thin films gas sensor application
    Saritas, Sevda
    Kundakci, Mutlu
    Coban, Omer
    Tuzemen, Sebahattin
    Yildirim, Muhammet
    PHYSICA B-CONDENSED MATTER, 2018, 541 : 14 - 18
  • [22] Reduced graphene oxide/α-Fe2O3 composite nanofibers for application in gas sensors
    Guo, Lanlan
    Kou, Xueying
    Ding, Mengdi
    Wang, Chong
    Dong, Linlin
    Zhang, Hong
    Feng, Changhao
    Sun, Yanfeng
    Gao, Yuan
    Sun, Peng
    Lu, Geyu
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 244 : 233 - 242
  • [23] Photocatalytic Degradation of Azo Dyes Using Au:TiO2, γ-Fe2O3:TiO2 Functional Nanosystems
    Jagadale, Tushar
    Kulkarni, Manjusha
    Pravarthana, D.
    Ramadan, Wegdan
    Thakur, Pragati
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (02) : 928 - 936
  • [24] Enhanced acetone gas sensor via TiO2 nanofiber-NiO nanoparticle heterojunction
    Lee, Jiyeon
    Kim, Hyojung
    Hilal, Muhammad
    Cai, Zhicheng
    SOLID STATE SCIENCES, 2024, 156
  • [25] Synthesis of Fe2O3/WO3 nanocomposites with enhanced sensing performance to acetone
    Xue, Dongyang
    Zong, Fengyi
    Zhang, Jianmin
    Lin, Xiaoping
    Li, Qiuhong
    CHEMICAL PHYSICS LETTERS, 2019, 716 : 61 - 68
  • [26] Surface-Controlled Photocatalysis and Chemical Sensing of TiO2, α-Fe2O3, and Cu2O Nanocrystals
    Kusior, Anna
    Synowiec, Milena
    Zakrzewska, Katarzyna
    Radecka, Marta
    CRYSTALS, 2019, 9 (03):
  • [27] Optimization of α-Fe2O3 Nanopillars Diameters for Photoelectrochemical Enhancement of α-Fe2O3-TiO2 Heterojunction
    Baldovi, Herme G.
    NANOMATERIALS, 2021, 11 (08)
  • [28] High performance ammonia gas detection based on TiO2/WO3•H2O heterojunction sensor
    Cheng, Cao
    Zhang, Hongyan
    Li, Fan
    Yu, Shuguo
    Chen, Yan
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 273
  • [30] In-situ construction of photoanode with Fe2O3/Fe3O4 heterojunction nanotube array to facilitate charge separation for efficient water splitting
    Xue, Jinbo
    Zhang, Narui
    Shen, Qianqian
    Li, Qi
    Liu, Xuguang
    Jia, Husheng
    Guan, Rongfeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 918