In-situ generated TiO2/α-Fe2O3 heterojunction arrays for batch manufacturing of conductometric acetone gas sensors

被引:96
作者
Wang, Chen [1 ]
Wang, Yinglin [1 ]
Cheng, Pengfei [1 ]
Xu, Luping [1 ]
Dang, Fan [1 ]
Wang, Tianliang [1 ]
Lei, Zhaohui [1 ]
机构
[1] Xidian Univ, Sch Aerosp Sci & Technol, 266 Xifeng Rd, Xian 710126, Peoples R China
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2021年 / 340卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
In-situ generation; TiO2; alpha-Fe2O3; Gas sensor; Heterojunction; Acetone; SENSING PROPERTIES; ROOM-TEMPERATURE; SNO2; NANOSTRUCTURES; SELECTIVE DETECTION; FACILE SYNTHESIS; ZNO NANOSHEETS; NANOROD ARRAYS; CERAMIC TUBE; PERFORMANCE; NANOPARTICLES;
D O I
10.1016/j.snb.2021.129926
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A highly sensitive and selective acetone gas sensor has been fabricated successfully by designing n-n heterojunction consisting of TiO2 nanorods and alpha-Fe2O3 branches. The structure and morphology of the TiO2/alpha-Fe2O3 nanocomposites were examined via X-ray diffraction and scanning electron microscopy, respectively. TiO2 nanorod (with the diameter about 42 nm) arrays were in-situ generated on the surface of Al2O3 ceramic tubes by a simple hydrothermal process. In addition, alpha-Fe2O3 branches grew on TiO2 stems successfully in the second hydrothermal process. These nanorod branches had a relatively uniform length, which could be tunable by changing the concentration of iron precursor. The gas sensing properties of the pristine and alpha-Fe2O3 branches-decorated TiO2 nanorods sensors with regard to acetone gas were investigated. The results indicated that the sensor based on TiO2/alpha-Fe2O3 heterostructures measured at 225 degrees C had a higher response of 21.9 toward 100 ppm of acetone gas which was about 9 times higher than pristine TiO2 nanorods sensor. The dominant mechanism for enhanced sensing properties were discussed in detail with the semiconductor depletion layer model and TiO2/alpha-Fe2O3 n-n heterojunction theory.
引用
收藏
页数:11
相关论文
共 50 条
[21]   α-Fe2O3 based nanomaterials as gas sensors [J].
Mirzaei, A. ;
Hashemi, B. ;
Janghorban, K. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (04) :3109-3144
[22]   Ni: Fe2O3, Mg: Fe2O3 and Fe2O3 thin films gas sensor application [J].
Saritas, Sevda ;
Kundakci, Mutlu ;
Coban, Omer ;
Tuzemen, Sebahattin ;
Yildirim, Muhammet .
PHYSICA B-CONDENSED MATTER, 2018, 541 :14-18
[23]   Photocatalytic Degradation of Azo Dyes Using Au:TiO2, γ-Fe2O3:TiO2 Functional Nanosystems [J].
Jagadale, Tushar ;
Kulkarni, Manjusha ;
Pravarthana, D. ;
Ramadan, Wegdan ;
Thakur, Pragati .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (02) :928-936
[24]   Reduced graphene oxide/α-Fe2O3 composite nanofibers for application in gas sensors [J].
Guo, Lanlan ;
Kou, Xueying ;
Ding, Mengdi ;
Wang, Chong ;
Dong, Linlin ;
Zhang, Hong ;
Feng, Changhao ;
Sun, Yanfeng ;
Gao, Yuan ;
Sun, Peng ;
Lu, Geyu .
SENSORS AND ACTUATORS B-CHEMICAL, 2017, 244 :233-242
[25]   Enhanced acetone gas sensor via TiO2 nanofiber-NiO nanoparticle heterojunction [J].
Lee, Jiyeon ;
Kim, Hyojung ;
Hilal, Muhammad ;
Cai, Zhicheng .
SOLID STATE SCIENCES, 2024, 156
[26]   Synthesis of Fe2O3/WO3 nanocomposites with enhanced sensing performance to acetone [J].
Xue, Dongyang ;
Zong, Fengyi ;
Zhang, Jianmin ;
Lin, Xiaoping ;
Li, Qiuhong .
CHEMICAL PHYSICS LETTERS, 2019, 716 :61-68
[27]   Surface-Controlled Photocatalysis and Chemical Sensing of TiO2, α-Fe2O3, and Cu2O Nanocrystals [J].
Kusior, Anna ;
Synowiec, Milena ;
Zakrzewska, Katarzyna ;
Radecka, Marta .
CRYSTALS, 2019, 9 (03)
[28]   Optimization of α-Fe2O3 Nanopillars Diameters for Photoelectrochemical Enhancement of α-Fe2O3-TiO2 Heterojunction [J].
Baldovi, Herme G. .
NANOMATERIALS, 2021, 11 (08)
[29]   High performance ammonia gas detection based on TiO2/WO3•H2O heterojunction sensor [J].
Cheng, Cao ;
Zhang, Hongyan ;
Li, Fan ;
Yu, Shuguo ;
Chen, Yan .
MATERIALS CHEMISTRY AND PHYSICS, 2021, 273
[30]   Synthesis and characterisation of TiO2 nanoparticles/Fe2O3 waste chips composite [J].
Koohestani, Hassan .
MICRO & NANO LETTERS, 2019, 14 (06) :678-682