astroABC: An Approximate Bayesian Computation Sequential Monte Carlo sampler for cosmological parameter estimation

被引:54
作者
Jennings, E. [1 ,2 ]
Madigan, M. [3 ]
机构
[1] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, MS209,POB 500,Kirk Rd & Pine St, Batavia, IL 60510 USA
[2] Univ Chicago, Enrico Fermi Inst, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
[3] Univ Dublin, Trinity Coll, Dept Theoret Phys, Dublin, Ireland
基金
美国国家科学基金会; 英国科学技术设施理事会; 美国能源部;
关键词
Cosmology; Theory cosmology; Cosmological parameters galaxies; Statistics methods; Statistical (stars); Supernovae; MODEL SELECTION; INFERENCE; PROBES;
D O I
10.1016/j.ascom.2017.01.001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Given the complexity of modern cosmological parameter inference where we are faced with non Gaussian data and noise, correlated systematics and multi-probe correlated datasets, the Approximate Bayesian Computation (ABC) method is a promising alternative to traditional Markov Chain Monte Carlo approaches in the case where the Likelihood is intractable or unknown. The ABC method is called "Likelihood free" as it avoids explicit evaluation of the Likelihood by using a forward model simulation of the data which can include systematics. We introduce astroABC, an open source ABC Sequential Monte Carlo (SMC) sampler for parameter estimation. A key challenge in astrophysics is the efficient use of large multi-probe datasets to constrain high dimensional, possibly correlated parameter spaces. With this in mind astroABC allows for massive parallelization using MPI, a framework that handles spawning of processes across multiple nodes. A key new feature of astroABC is the ability to create MPI groups with different communicators, one for the sampler and several others for the forward model simulation, which speeds up sampling time considerably. For smaller jobs the Python multiprocessing option is also available. Other key features of this new sampler include: a Sequential Monte Carlo sampler; a method for iteratively adapting tolerance levels; local covariance estimate using scikit-learn's KDTree; modules for specifying optimal covariance matrix for a component-wise or multivariate normal perturbation kernel and a weighted covariance metric; restart files output frequently so an interrupted sampling run can be resumed at any iteration; output and restart files are backed up at every iteration; user defined distance metric and simulation methods; a module for specifying heterogeneous parameter priors including non-standard prior PDFs; a module for specifying a constant, linear, log or exponential tolerance level; well-documented examples and sample scripts. This code is hosted online at https://github.com/EliseJ/astroABC. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:16 / 22
页数:7
相关论文
共 25 条
[1]  
Adam R., 2015, ARXIV E PRINTS
[2]  
Akeret J., 2015, ASTROPHYSICS SOURCE
[3]  
[Anonymous], 2003, Probability Theory: the Logic of Science
[4]  
[Anonymous], J COSMOL ASTROPART P
[5]  
Beaumont MA, 2002, GENETICS, V162, P2025
[6]   Adaptive approximate Bayesian computation [J].
Beaumont, Mark A. ;
Cornuet, Jean-Marie ;
Marin, Jean-Michel ;
Robert, Christian P. .
BIOMETRIKA, 2009, 96 (04) :983-990
[7]   Approximate Bayesian Computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift [J].
Cameron, E. ;
Pettitt, A. N. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 425 (01) :44-65
[8]  
Csillery K., 2011, ARXIV E PRINTS
[9]   The effect of covariance estimator error on cosmological parameter constraints [J].
Dodelson, Scott ;
Schneider, Michael D. .
PHYSICAL REVIEW D, 2013, 88 (06)
[10]   Combining probes of large-scale structure with CosmoLike [J].
Eifler, Tim ;
Krause, Elisabeth ;
Schneider, Peter ;
Honscheid, Klaus .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 440 (02) :1379-1390