Ultralow- and Low-Background Surfaces for Single-Molecule Localization Microscopy of Multistep Biointerfaces for Single-Molecule Sensing

被引:11
作者
Zhao, Manchen [1 ,2 ,3 ]
Nicovich, Philip R. [4 ,5 ,6 ]
Janco, Miro [4 ,5 ]
Deng, Qiji [4 ,5 ,7 ]
Yang, Zhengmin [4 ,5 ]
Ma, Yuanqing [4 ,5 ]
Boecking, Till [4 ,5 ]
Gaus, Katharina [2 ,4 ,5 ]
Gooding, J. Justin [1 ,2 ,3 ]
机构
[1] Univ New South Wales, Sch Chem, Sydney, NSW 2052, Australia
[2] Univ New South Wales, Australian Ctr NanoMed, Sydney, NSW 2052, Australia
[3] Univ New South Wales, ARC Ctr Excellence Convergent BioNano Sci & Techn, Sydney, NSW 2052, Australia
[4] Univ New South Wales, Sch Med Sci, EMBL Australia Node Single Mol Sci, Sydney, NSW 2052, Australia
[5] Univ New South Wales, Sch Med Sci, ARC Ctr Excellence Adv Mol Imaging, Sydney, NSW 2052, Australia
[6] Allen Inst Brain Sci, Seattle, WA 98106 USA
[7] CSIRO Hlth & Biosecur, Australian Anim Hlth Lab, 5 Portarlington Rd, Geelong, Vic 3220, Australia
基金
英国医学研究理事会; 澳大利亚研究理事会;
关键词
SUPERRESOLUTION FLUORESCENCE MICROSCOPY; POLY(L-LYSINE)-G-POLY(ETHYLENE GLYCOL); PROTEIN HETEROGENEITY; POLYETHYLENE OXIDE; ADSORPTION; RESOLUTION; INITIATION; PROBES; PALM; SIZE;
D O I
10.1021/acs.langmuir.8b01487
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-molecule localization microscopy (SMLM) has created the opportunity of pushing fluorescence microscopy from being a biological imaging tool to a surface characterization and possibly even a quantitative analytical tool. The latter could be achieved by molecular counting using pointillist SMLM data sets. However, SMLM is especially sensitive to background fluorescent signals, which influences any subsequent analysis. Therefore, fabricating sensing surfaces that resist nonspecific adsorption of proteins, even after multiple modification steps, has become paramount. Herein is reported two different ways to modify surfaces: dichlorodimethylsilane-biotinylated bovine serum albumin-Tween-20 (DbT20) and poly-L-lysine grafted polyethylene glycol (PLL-PEG) mixed with biotinylated PLL-PEG (PLL-PEG/PEGbiotin). The results show that the ability to resist nonspecific adsorption of DbT20 surfaces deteriorates with an increase in the number of modification steps required after the addition of the DbT20, which limits the applicability of this surface for SMLM. As such, a new surface for SMLM that employs PLL-PEG/PEGbiotin was developed that exhibits ultralow amounts of nonspecific protein adsorption even after many modification steps. The utility of the surface was demonstrated for human influenza hemagglutinin-tagged mEos2, which was directly pulled down from cell lysates onto the PLL-PEG/PEGbiotin surface. The results strongly indicated that the PLL-PEG/PEGbiotin surface satisfies the criteria of SMLM imaging of a negligible background signal and negligible nonspecific adsorption.
引用
收藏
页码:10012 / 10018
页数:7
相关论文
共 50 条
[21]   Polarization of excitation light influences molecule counting in single-molecule localization microscopy [J].
Ye Chen ;
Han Lin ;
Mandy J. Ludford-Menting ;
Andrew H. Clayton ;
Min Gu ;
Sarah M. Russell .
Histochemistry and Cell Biology, 2015, 143 :11-19
[22]   Model-independent counting of molecules in single-molecule localization microscopy [J].
Hummer, Gerhard ;
Fricke, Franziska ;
Heilemann, Mike .
MOLECULAR BIOLOGY OF THE CELL, 2016, 27 (22) :3637-3644
[23]   A Bayesian cluster analysis method for single-molecule localization microscopy data [J].
Griffie, Juliette ;
Shannon, Michael ;
Bromley, Claire L. ;
Boelen, Lies ;
Burn, Garth L. ;
Williamson, David J. ;
Heard, Nicholas A. ;
Cope, Andrew P. ;
Owen, Dylan M. ;
Rubin-Delanchy, Patrick .
NATURE PROTOCOLS, 2016, 11 (12) :2499-2514
[24]   Microscopy with a single-molecule scanning electrometer [J].
Lee, Joonhee ;
Tallarida, Nicholas ;
Chen, Xing ;
Jensen, Lasse ;
Apkarian, V. Ara .
SCIENCE ADVANCES, 2018, 4 (06)
[25]   Coherent nonlinear single-molecule microscopy [J].
Gerhardt, I. ;
Wrigge, G. ;
Hwang, J. ;
Zumofen, G. ;
Sandoghdar, V. .
PHYSICAL REVIEW A, 2010, 82 (06)
[26]   Quantitative Aspects of Single-Molecule Microscopy [Information-theoretic analysis of single-molecule data] [J].
Ober, Raimund J. ;
Tahmasbi, Amir ;
Ram, Sripad ;
Lin, Zhiping ;
Ward, Elizabeth Sally .
IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (01) :58-69
[27]   Q&A: Single-molecule localization microscopy for biological imaging [J].
McEvoy, Ann L. ;
Greenfield, Derek ;
Bates, Mark ;
Liphardt, Jan .
BMC BIOLOGY, 2010, 8
[28]   Enabling single-molecule localization microscopy in turbid food emulsions [J].
Jabermoradi, Abbas ;
Yang, Suyeon ;
Gobes, Martijn, I ;
van Duynhoven, John P. M. ;
Hohlbein, Johannes .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2220)
[29]   Single-molecule orientation localization microscopy I: fundamental limits [J].
Zhang, Oumeng ;
Lew, Matthew D. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2021, 38 (02) :277-287
[30]   Quantitative evaluation of software packages for single-molecule localization microscopy [J].
Sage, Daniel ;
Kirshner, Hagai ;
Pengo, Thomas ;
Stuurman, Nico ;
Min, Junhong ;
Manley, Suliana ;
Unser, Michael .
NATURE METHODS, 2015, 12 (08) :717-U37