Parabolic variational inequalities with generalized reflecting directions

被引:0
作者
Rotenstein, Eduard [1 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, 9 Carol 1 Blvd, Iasi 700506, Romania
关键词
Evolution equations; Oblique reflection; PDEs; STOCHASTIC DIFFERENTIAL-EQUATIONS; OBLIQUE SUBGRADIENTS;
D O I
10.1515/math-2015-0083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study, in a Hilbert framework, some abstract parabolic variational inequalities, governed by reflecting subgradients with multiplicative perturbation, of the following type: y'(t) + Ay(t) + Theta(t, y, (t))partial derivative phi(y(t)) f(t, y(t)), y(0) = y(0), t is an element of[0, T], where A is a linear self-adjoint operator, partial derivative phi is the subdifferential operator of a proper lower semicontinuous convex function phi defined on a suitable Hilbert space, and Theta is the perturbing term which acts on the set of reflecting directions, destroying the maximal monotony of the multivalued term. We provide the existence of a solution for the above Cauchy problem. Our evolution equation is accompanied by examples which aim to (systems of) PDEs with perturbed reflection.
引用
收藏
页码:860 / 867
页数:8
相关论文
共 14 条
[1]   Multiplicative perturbations of the Laplacian and related approximation problems [J].
Altomare, Francesco ;
Milella, Sabina ;
Musceo, Graziana .
JOURNAL OF EVOLUTION EQUATIONS, 2011, 11 (04) :771-792
[2]  
AUBIN JP, 1963, CR HEBD ACAD SCI, V256, P5042
[3]  
Barbu V, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4419-5542-5
[4]  
Barbu V., 1997, RIC MAT, V46, P77
[5]  
Barbu V., 1997, DIFFER INTEGRAL EQU, V10
[6]  
Barbu V., 1984, Optimal Control of Variational Inequalities, V100
[7]   THE PERTURBED LAPLACE OPERATOR IN A WEIGHTED L2-SPACE [J].
EIDUS, D .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (02) :400-410
[8]   Stochastic variational inequalities with oblique subgradients [J].
Gassous, Anouar M. ;
Rascanu, Aurel ;
Rotenstein, Eduard .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (07) :2668-2700
[9]  
Lions J.-L., 1969, Quelques m ethodes de r esolution des probl`emes aux limites non lin eaires
[10]   STOCHASTIC DIFFERENTIAL-EQUATIONS WITH REFLECTING BOUNDARY-CONDITIONS [J].
LIONS, PL ;
SZNITMAN, AS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (04) :511-537