InGaP-based Quantum Well Solar Cells

被引:0
作者
Sayed, Islam E. Hashem [1 ]
Hagar, Brandon G. [1 ]
Carlin, C. Zachary [1 ]
Colter, Peter C. [1 ]
Bedair, S. M. [1 ]
机构
[1] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
来源
2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC) | 2016年
基金
美国国家科学基金会;
关键词
bandgap engineering; InGaP; quantum wells; III-V solar cells;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Quantum well structures hold tremendous potential in taking next step beyond current photovoltaic structures in achieving solar conversion efficiencies beyond 50%. In this paper we investigate p-i-n InGaP solar cells incorporating InGaAsP/InGaP strain balanced multiple quantum wells (SBMQWs) to tune the absorption threshold beyond the In0.49Ga0.51P cut-off (similar to 1.85 eV). The effects of quantum well number and thickness on the optoelectronic properties of InGaAsP/InGaP SBMQWs are investigated. Specifically, we investigate the bandgap tunability of these SBMQW devices by varying well and barrier thickness. Spectral response measurements reveal that longer excitonic absorption with efficient carrier transport can be realized if proper materials compositions and thicknesses are realized. In addition, InGaP p-i-n solar cells including various numbers of InGaAsP/InGaP SBMQWs with an effective bandgap of 1.65 eV in the intrinsic (i) layer were fabricated and characterized. With up to 30 quantum wells, spectral response and light I-V measurements reveal an improvement in the excitonic absorption and short circuit current in comparison to the standard device. The promising results in this work provide an alternative path for realizing 1.5-1.8 eV subcells in next-generation multi-junction solar cells.
引用
收藏
页码:147 / 150
页数:4
相关论文
共 11 条
[1]  
[Anonymous], STRAIN BALANCED INGA
[2]   OPTICAL-PROPERTIES OF THIN-FILMS [J].
ASPNES, DE .
THIN SOLID FILMS, 1982, 89 (03) :249-262
[3]   Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method [J].
Bremner, S. P. ;
Levy, M. Y. ;
Honsberg, C. B. .
PROGRESS IN PHOTOVOLTAICS, 2008, 16 (03) :225-233
[4]   PC1D version 5: 32-bit solar cell modeling on personal computers [J].
Clugston, DA ;
Basore, PA .
CONFERENCE RECORD OF THE TWENTY SIXTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 1997, 1997, :207-210
[5]   Strain-balanced criteria for multiple quantum well structures and its signature in X-ray rocking curves [J].
Ekins-Daukes, NJ ;
Kawaguchi, K ;
Zhang, J .
CRYSTAL GROWTH & DESIGN, 2002, 2 (04) :287-292
[6]  
Green MA, 2016, PROG PHOTOVOLTAICS, V24, P3, DOI [10.1002/pip.2728, 10.1002/pip.892, 10.1002/pip.2855]
[7]   InGaP-based quantum well solar cells: Growth, structural design, and photovoltaic properties [J].
Hashem, Islam E. ;
Carlin, C. Zachary ;
Hagar, Brandon G. ;
Colter, Peter C. ;
Bedair, S. M. .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (09)
[8]  
Hashem Sayed Islam E., 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). Proceedings, P1, DOI 10.1109/PVSC.2015.7356081
[9]   Quantum-Well Solar Cells for Space: The Impact of Carrier Removal on End-of-Life Device Performance [J].
Hoheisel, R. ;
Gonzalez, M. ;
Lumb, M. P. ;
Scheiman, D. A. ;
Messenger, S. R. ;
Bailey, C. G. ;
Lorentzen, J. ;
Tibbits, T. N. D. ;
Imaizumi, M. ;
Ohshima, T. ;
Sato, S. ;
Jenkins, P. P. ;
Walters, R. J. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2014, 4 (01) :253-259
[10]  
King R., 2009, 24 EUR PHOT SOL EN C