Inverse scattering transform and multiple high-order pole solutions for the Gerdjikov-Ivanov equation under the zero/nonzero background

被引:33
作者
Zhang, Zechuan [1 ,2 ]
Fan, Engui [1 ,2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2021年 / 72卷 / 04期
基金
美国国家科学基金会;
关键词
Gerdjikov-Ivanov equation; Riemann-Hilbert problem; Multiple high-order poles; Soliton solution; HAMILTONIAN-SYSTEMS; PULSE-PROPAGATION; OPTICAL SOLITONS; WAVES; ASYMPTOTICS; MODULATION;
D O I
10.1007/s00033-021-01583-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the inverse scattering transform is considered for the Gerdjikov-Ivanov equation with zero and non-zero boundary conditions by a matrix Riemann-Hilbert (RH) method. The formula of the soliton solutions is established by Laurent expansion to the RH problem. The method we used is different from computing solution with simple poles since the residue conditions here are hard to be obtained. The formula of multiple soliton solutions with one high-order pole and N multiple high-order poles are obtained, respectively. The dynamical properties and characteristic for the high-order pole solutions are further analyzed.
引用
收藏
页数:25
相关论文
共 38 条
[1]  
Ablowitz M. J., 1991, SOLITONS NONLINEAR E
[2]  
Agrawal GP., 2007, NONLINEAR FIBER OPTI
[3]   Large-Order Asymptotics for Multiple-Pole Solitons of the Focusing Nonlinear Schrodinger Equation [J].
Bilman, Deniz ;
Buckingham, Robert .
JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (05) :2185-2229
[4]   The Three-Component Defocusing Nonlinear Schrodinger Equation with Nonzero Boundary Conditions [J].
Biondini, Gino ;
Kraus, Daniel K. ;
Prinari, Barbara .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 348 (02) :475-533
[5]   INVERSE SCATTERING TRANSFORM FOR THE DEFOCUSING MANAKOV SYSTEM WITH NONZERO BOUNDARY CONDITIONS [J].
Biondini, Gino ;
Kraus, Daniel .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (01) :706-757
[6]   Inverse scattering transform for the focusing nonlinear Schrodinger equation with nonzero boundary conditions [J].
Biondini, Gino ;
Kovacic, Gregor .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (03)
[7]   INTEGRABILITY OF NON-LINEAR HAMILTONIAN-SYSTEMS BY INVERSE SCATTERING METHOD [J].
CHEN, HH ;
LEE, YC ;
LIU, CS .
PHYSICA SCRIPTA, 1979, 20 (3-4) :490-492
[8]   Variable separation and algebro-geometric solutions of the Gerdjikov-lvanov equation [J].
Dai, HH ;
Fan, EG .
CHAOS SOLITONS & FRACTALS, 2004, 22 (01) :93-101
[9]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368
[10]   The Inverse Scattering Transform for the Defocusing Nonlinear Schrodinger Equations with Nonzero Boundary Conditions [J].
Demontis, F. ;
Prinari, B. ;
van der Mee, C. ;
Vitale, F. .
STUDIES IN APPLIED MATHEMATICS, 2013, 131 (01) :1-40