Some New Harmonically Convex Function Type Generalized Fractional Integral Inequalities

被引:12
作者
Ali, Rana Safdar [1 ]
Mukheimer, Aiman [2 ]
Abdeljawad, Thabet [2 ,3 ,4 ]
Mubeen, Shahid [5 ]
Ali, Sabila [1 ]
Rahman, Gauhar [6 ]
Nisar, Kottakkaran Sooppy [7 ]
机构
[1] Univ Lahore, Dept Math, Sargodha Campus, Sargodha 40100, Pakistan
[2] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh 11586, Saudi Arabia
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Asia Univ, Dept Comp Sci & Informat Engn, Taichung 41354, Taiwan
[5] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan
[6] Hazara Univ, Dept Math, Mansehra 21120, Pakistan
[7] Prince Sattam bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
关键词
bessel function; harmonically convex function; non-singular function involving kernel fractional operator; Hadamard inequality; Fejer-Hadamard inequality; HADAMARD TYPE INEQUALITIES; FEJER TYPE INEQUALITIES; HERMITE-HADAMARD;
D O I
10.3390/fractalfract5020054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we established a new version of generalized fractional Hadamard and Fejer-Hadamard type integral inequalities. A fractional integral operator (FIO) with a non-singular function (multi-index Bessel function) as its kernel and monotone increasing functions is utilized to obtain the new version of such fractional inequalities. Our derived results are a generalized form of several proven inequalities already existing in the literature. The proven inequalities are useful for studying the stability and control of corresponding fractional dynamic equations.
引用
收藏
页数:12
相关论文
共 31 条
[1]   Some Fractional Operators with the Generalized Bessel-Maitland Function [J].
Ali, R. S. ;
Mubeen, S. ;
Nayab, I ;
Araci, Serkan ;
Rahman, G. ;
Nisar, K. S. .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
[2]  
[Anonymous], 2017, J ANAL-INDIA, DOI DOI 10.1007/S41478-017-0032-Y
[3]  
[Anonymous], 2016, New Trends Math. Sci.
[4]   Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals [J].
Chen, Hua ;
Katugampola, Udita N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) :1274-1291
[5]   ON MINKOWSKI AND HERMITE-HADAMARD INTEGRAL INEQUALITIES VIA FRACTIONAL INTEGRATION [J].
Dahmani, Zoubir .
ANNALS OF FUNCTIONAL ANALYSIS, 2010, 1 (01) :51-58
[6]  
Ekinci A, 2019, APPL COMPUT MATH-BAK, V18, P288
[7]  
Farid G., 2018, J MATH COMPUT SCI, V8, P630, DOI DOI 10.28919/JMCS/3880
[8]  
Farid G., 2016, NONLINEAR ANAL FORUM, V21, P77
[9]   HADAMARD AND FEJER-HADAMARD TYPE INEQUALITIES FOR CONVEX AND RELATIVE CONVEX FUNCTIONS VIA AN EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION [J].
Farid, Ghulam ;
Mishra, Vishnu Narayan ;
Mehmood, Sajid .
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (05) :892-903
[10]  
Fejer L., 1906, NATURWISS ANZ UNGAR, V24, P369