Hamilton-Souplet-Zhang's gradient estimates for two weighted nonlinear parabolic equations

被引:4
作者
Ma, Bing-qing [1 ]
Huang, Guang-yue [1 ]
机构
[1] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
关键词
Hamilton's gradient estimate; Souplet-Zhang's gradient estimate; weighted nonlinear parabolic equation; Bakry-Emery Ricci tensor; HEAT-EQUATION; KERNEL;
D O I
10.1007/s11766-017-3500-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider gradient estimates for positive solutions to the following weighted nonlinear parabolic equations on a complete smooth metric measure space with only Bakry-Aemery Ricci tensor bounded below: One is u(t) = Delta(f)u + au log u + bu with a, b two real constants, and another is u(t) = Delta(f)u + lambda u(alpha) with lambda, alpha two real constants. We obtain local Hamilton-Souplet-Zhang type gradient estimates for the above two nonlinear parabolic equations. In particular, our estimates do not depend on any assumption on f.
引用
收藏
页码:353 / 364
页数:12
相关论文
共 21 条
[1]  
[Anonymous], 2010, RECENT ADV GEOMETRIC
[2]   Gradient estimates for the heat equation under the Ricci flow [J].
Bailesteanu, Mihai ;
Cao, Xiaodong ;
Pulemotov, Artem .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3517-3542
[3]  
Bakry D., 1994, LECT NOTES MATH, V1581, P1, DOI 10.1007/BFb0073872
[4]   Hamilton-Souplet-Zhang's Gradient Estimates for Two Types of Nonlinear Parabolic Equations under the Ricci Flow [J].
Huang, Guangyue ;
Ma, Bingqing .
JOURNAL OF FUNCTION SPACES, 2016, 2016
[5]   Gradient estimates and Liouville type theorems for a nonlinear elliptic equation [J].
Huang, Guangyue ;
Ma, Bingqing .
ARCHIV DER MATHEMATIK, 2015, 105 (05) :491-499
[6]   Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds [J].
Huang, Guangyue ;
Huang, Zhijie ;
Li, Haizhong .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2013, 43 (03) :209-232
[7]   Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds [J].
Huang, Guangyue ;
Ma, Bingqing .
ARCHIV DER MATHEMATIK, 2010, 94 (03) :265-275
[8]  
LI JY, 1991, J FUNCT ANAL, V97, P293
[9]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[10]   Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds [J].
Li, XD .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (10) :1295-1361