THE COMPLEXITY OF COMPUTING THE SIGN OF THE TUTTE POLYNOMIAL

被引:18
作者
Goldberg, Leslie Ann [1 ]
Jerrum, Mark [2 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
[2] Univ London, Sch Math Sci, London E1 4NS, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
computational complexity; Tutte polynomial; #P-completeness; COMPUTATIONAL-COMPLEXITY; INAPPROXIMABILITY; GRAPH;
D O I
10.1137/12088330X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the complexity of computing the sign of the Tutte polynomial of a graph. As there are only three possible outcomes (positive, negative, and zero), this seems at first sight more like a decision problem than a counting problem. Surprisingly, however, there are large regions of the parameter space for which computing the sign of the Tutte polynomial is actually #P-hard. As a trivial consequence, approximating the polynomial is also #P-hard in this case. Thus, approximately evaluating the Tutte polynomial in these regions is as hard as exactly counting the satisfying assignments to a CNF Boolean formula. For most other points in the parameter space, we show that computing the sign of the polynomial is in FP, whereas approximating the polynomial can be done in polynomial time with an NP oracle. As a special case, we completely resolve the complexity of computing the sign of the chromatic polynomial-this is easily computable at q = 2 and when q <= 32/27, and is NP-hard to compute for all other values of the parameter q.
引用
收藏
页码:1921 / 1952
页数:32
相关论文
共 50 条
  • [31] Computing Tutte Polynomials
    Haggard, Gary
    Pearce, David J.
    Royle, Gordon
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2010, 37 (03):
  • [32] The Complexity of Approximating complex-valued Ising and Tutte partition functions
    Goldberg, Leslie Ann
    Guo, Heng
    COMPUTATIONAL COMPLEXITY, 2017, 26 (04) : 765 - 833
  • [33] Poincare polynomial of elliptic arrangements is not determined by the Tutte polynomial
    Pagaria, Roberto
    DISCRETE MATHEMATICS, 2020, 343 (06)
  • [34] Inapproximability of the Tutte polynomial of a planar graph
    Goldberg, Leslie Ann
    Jerrum, Mark
    COMPUTATIONAL COMPLEXITY, 2012, 21 (04) : 605 - 642
  • [35] The Tutte polynomial for homeomorphism classes of graphs
    Read, RC
    Whitehead, EG
    DISCRETE MATHEMATICS, 2002, 243 (1-3) : 267 - 272
  • [36] The expansion of a chord diagram and the Tutte polynomial
    Nakamigawa, Tomoki
    Sakuma, Tadashi
    DISCRETE MATHEMATICS, 2018, 341 (06) : 1573 - 1581
  • [37] Generalized star configurations and the Tutte polynomial
    Anzis, Benjamin
    Garrousian, Mehdi
    Tohaneanu, Stefan O.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 46 (01) : 165 - 187
  • [38] A version of Tutte's polynomial for hypergraphs
    Kalman, Tamas
    ADVANCES IN MATHEMATICS, 2013, 244 : 823 - 873
  • [39] On Tutte polynomial uniqueness of twisted wheels
    Duan, Yinghua
    Wu, Haidong
    Yu, Qinglin
    DISCRETE MATHEMATICS, 2009, 309 (04) : 926 - 936
  • [40] The Tutte polynomial of symmetric hyperplane arrangements
    Randriamaro, Hery
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2020, 29 (03)