Data assimilation for urban noise mapping with a meta-model

被引:12
作者
Lesieur, Antoine [1 ]
Mallet, Vivien [1 ]
Aumond, Pierre [2 ]
Can, Arnaud [2 ]
机构
[1] INRIA, ANGE, 2 Rue Simone Iff, F-75012 Paris, France
[2] Univ Gustave Eiffel, CEREMA, IFSTTAR, UMRAE, Allee Ponts & Chaussees, F-44344 Bouguenais, France
关键词
Noise mapping; Data assimilation; Meta model; Noise measurement; INTERPOLATION;
D O I
10.1016/j.apacoust.2021.107938
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Accurately predicting dynamic noise levels in urban environments is non-trivial. This study aims to optimally combine both simulated and empirical data. Acoustic data from microphone arrays, traffic and weather data was merged with a simulated noise map, created with a statistical emulator tool (meta-model). Each hour, a noise map is generated by the meta-model with the measured traffic and weather data. This map is algorithmically merged with the measured readings to form a new composite map. The resulting analyzed map is the best linear unbiased estimator under certain assumptions. The performance is evaluated with leave-one-out cross-validation. The performance of the method depends on the accuracy of the meta-model, the input parameters of the meta-model and the structure of the error covariances between the simulated noise level errors. With 16 microphones over an area of 3 km(2), this new method achieves a reduction of 30% of the root-mean-square error when compared to ameta-model only. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 1996, Monte Carlo: Concepts, Algorithms and Applications
[2]  
Aumond P, P 49 INT C EXH NOIS
[3]   Kriging-based spatial interpolation from measurements for sound level mapping in urban areas [J].
Aumond, Pierre ;
Can, Arnaud ;
Mallet, Vivien ;
De Coensel, Bert ;
Ribeiro, Carlos ;
Botteldooren, Dick ;
Lavandier, Catherine .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 143 (05) :2847-2857
[4]   Geostatistical modeling of sound propagation: Principles and a field application experiment [J].
Baume, Olivier ;
Gauvreau, Benoit ;
Berengier, Michel ;
Junker, Fabrice ;
Wackernagel, Hans ;
Chiles, Jean-Paul .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2009, 126 (06) :2894-2904
[5]   NoiseModelling: An Open Source GIS Based Tool to Produce Environmental Noise Maps [J].
Bocher, Erwan ;
Guillaume, Gwenael ;
Picaut, Judicael ;
Petit, Gwendall ;
Fortin, Nicolas .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (03)
[6]  
Bouttier F., 2002, METEOROLOGICAL TRAIN
[7]  
De Coensel B, P 10 EUR C EXP NOIS, P2339
[8]  
Eerden F, 2014, MODEL BASED MONITORI
[9]   EFFICIENT ALGORITHMS FOR SHORTEST PATHS IN SPARSE NETWORKS [J].
JOHNSON, DB .
JOURNAL OF THE ACM, 1977, 24 (01) :1-13
[10]  
Jolliffe I.T., 1986, Principal Component Analysis, P115, DOI 10.1007/978-1-4757-1904-8_7