Riesz potentials for Korteweg-de Vries solitons

被引:1
作者
Varlamov, Vladimir [1 ]
机构
[1] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78539 USA
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2010年 / 61卷 / 01期
关键词
Riesz potentials; Korteweg-de Vries solitons; Hilbert transforms; WEAK ROTATION LIMIT; AIRY FUNCTIONS; FRACTIONAL DERIVATIVES; OSTROVSKY EQUATION; SOLITARY WAVES; STABILITY;
D O I
10.1007/s00033-009-0003-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Riesz potentials (also called Riesz fractional derivatives) are defined as fractional powers of Laplacian. They are traditionally used for studying existence and uniqueness for equations of the Korteweg-de Vries type (KdV-type henceforth). Zero mean properties are established for Riesz potentials of solutions of KdV-type equations, D(x)(alpha) u(x, t), for alpha is an element of (0, 3/2). As an important example Riesz fractional derivatives and their Hilbert transforms are computed for the well-known soliton solution of KdV. Obtained representations involve the Hurwitz Zeta function. Zero mean properties are established and asymptotic expansions are derived. A particular case of the obtained formula provides an algebraic soliton solution for extended KdV.
引用
收藏
页码:41 / 61
页数:21
相关论文
共 24 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[2]  
[Anonymous], 1991, LONDON MATH SOC LECT
[3]  
[Anonymous], 1954, TABLES INTEGRAL TRAN
[4]  
[Anonymous], FOURIER ANAL
[5]  
[Anonymous], INTEGRALS SERIES
[6]  
CRAIG W, 1992, ANN I H POINCARE-AN, V9, P147
[7]  
Drazin P. G., 1989, Solitons: An Introduction, V2
[8]  
Iorio, 2001, CAMBRIDGE STUDIES AD
[9]  
Kato T., 1983, Adv. Math. Suppl. Stud. Stud. Appl. Math., V8, P93
[10]   ON THE (GENERALIZED) KORTEWEG-DE VRIES EQUATION [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
DUKE MATHEMATICAL JOURNAL, 1989, 59 (03) :585-610