Efficient Photovoltaic System Maximum Power Point Tracking Using a New Technique

被引:40
作者
Seyedmahmoudian, Mehdi [1 ]
Horan, Ben [1 ]
Rahmani, Rasoul [2 ]
Oo, Aman Maung Than [1 ]
Stojcevski, Alex [3 ]
机构
[1] Deakin Univ, Sch Engn, Waurn Ponds, Vic 3216, Australia
[2] Swinburne Univ Technol, Sch Software & Elect Engn, Hawthorn, Vic 3122, Australia
[3] RMIT Univ, Ctr Technol, Ho Chi Minh 70000, Vietnam
关键词
soft computing methods; partial shading conditions; energy efficiency; stability; maximum power point tracking; photovoltaic systems; computational cost; HARDWARE IMPLEMENTATION; OPTIMIZATION; SIMULATION; ARRAYS; MPPT;
D O I
10.3390/en9030147
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Partial shading is an unavoidable condition which significantly reduces the efficiency and stability of a photovoltaic (PV) system. When partial shading occurs the system has multiple-peak output power characteristics. In order to track the global maximum power point (GMPP) within an appropriate period a reliable technique is required. Conventional techniques such as hill climbing and perturbation and observation (P&O) are inadequate in tracking the GMPP subject to this condition resulting in a dramatic reduction in the efficiency of the PV system. Recent artificial intelligence methods have been proposed, however they have a higher computational cost, slower processing time and increased oscillations which results in further instability at the output of the PV system. This paper proposes a fast and efficient technique based on Radial Movement Optimization (RMO) for detecting the GMPP under partial shading conditions. The paper begins with a brief description of the behavior of PV systems under partial shading conditions followed by the introduction of the new RMO-based technique for GMPP tracking. Finally, results are presented to demonstration the performance of the proposed technique under different partial shading conditions. The results are compared with those of the PSO method, one of the most widely used methods in the literature. Four factors, namely convergence speed, efficiency (power loss reduction), stability (oscillation reduction) and computational cost, are considered in the comparison with the PSO technique.
引用
收藏
页数:18
相关论文
共 39 条
  • [1] A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions
    Ahmed, Nabil A.
    Miyatake, Masafumi
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2008, 78 (05) : 777 - 784
  • [2] A Maximum Power Point Tracking Technique for Partially Shaded Photovoltaic Systems in Microgrids
    Alajmi, Bader N.
    Ahmed, Khaled H.
    Finney, Stephen J.
    Williams, Barry W.
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (04) : 1596 - 1606
  • [3] Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System
    Alajmi, Bader N.
    Ahmed, Khaled H.
    Finney, Stephen J.
    Williams, Barry W.
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2011, 26 (04) : 1022 - 1030
  • [4] [Anonymous], SUSTAIN CITIES SOC
  • [5] [Anonymous], EL MACH SYST ICEMS 2
  • [6] [Anonymous], IEEE POW ENG SOC GEN
  • [7] Simulation of a new maximum power point tracking technique for multiple photovoltaic arrays
    Bazzi, Ali M.
    Karaki, Sami H.
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ELECTRO/INFORMATION TECHNOLOGY, 2008, : 175 - 178
  • [8] Cascaded DC-DC Converter Photovoltaic Systems: Power Optimization Issues
    Bratcu, Antoneta Iuliana
    Munteanu, Iulian
    Bacha, Seddik
    Picault, Damien
    Raison, Bertrand
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (02) : 403 - 411
  • [9] Experimental Performance of MPPT Algorithm for Photovoltaic Sources Subject to Inhomogeneous Insolation
    Carannante, G.
    Fraddanno, Ciro
    Pagano, Mario
    Piegari, Luigi
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (11) : 4374 - 4380
  • [10] A Multilevel Inverter for Photovoltaic Systems With Fuzzy Logic Control
    Cecati, Carlo
    Ciancetta, Fabrizio
    Siano, Pierluigi
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (12) : 4115 - 4125