共 51 条
Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography
被引:120
作者:
Guerreiro, Eduarda M.
[1
]
Vestad, Beate
[2
,8
,9
]
Steffensen, Lilly Alice
[2
]
Aass, Hans Christian D.
[2
]
Saeed, Muhammad
[1
,3
]
Ovstebo, Reidun
[2
]
Costea, Daniela Elena
[4
,5
,6
]
Galtung, Hilde Kanli
[1
]
Soland, Tine M.
[1
,7
]
机构:
[1] Univ Oslo, Inst Oral Biol, Fac Dent, Oslo, Norway
[2] Oslo Univ Hosp, Dept Med Biochem, Blood Cell Res Grp, Oslo, Norway
[3] Univ Oslo, Inst Oral Biol, Electron Microscopy Lab, Oslo, Norway
[4] Univ Bergen, Ctr Canc Biomarkers CCBio, Bergen, Norway
[5] Univ Bergen, Gade Lab Pathol, Dept Clin Med, Bergen, Norway
[6] Haukeland Hosp, Dept Pathol, Bergen, Norway
[7] Oslo Univ Hosp, Dept Pathol, Oslo, Norway
[8] Oslo Univ Hosp, Rikshosp, Internal Med Res Inst, Oslo, Norway
[9] Univ Oslo, Inst Clin Med, Oslo, Norway
来源:
关键词:
EXOSOMES;
CULTURE;
MICROVESICLES;
TRACKING;
GROWTH;
SERA;
RNAS;
D O I:
10.1371/journal.pone.0204276
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Extracellular vesicles (EVs) are a heterogeneous population of biological particles released by cells. They represent an attractive source of potential biomarkers for early detection of diseases such as cancer. However, it is critical that sufficient amounts of EVs can be isolated and purified in a robust and reproducible manner. Several isolation methods that seem to produce distinct populations of vesicles exist, making data comparability difficult. While some methods induce cellular stress that may affect both the quantity and function of the EVs produced, others involve expensive reagents or equipment unavailable for many laboratories. Thus, there is a need for a standardized, feasible and cost-effective method for isolation of EVs from cell culture supernatants. Here we present the most common obstacles in the production and isolation of small EVs, and we suggest a combination of relatively simple strategies to avoid these. Three distinct cell lines were used (human oral squamous cell carcinoma (PE/CA-PJ49/E10)), pancreatic adenocarcinoma (BxPC3), and a human melanoma brain metastasis (H3). The addition of 1% exosome-depleted FBS to Advanced culture media enabled for reduced presence of contaminating bovine EVs while still ensuring an acceptable cell proliferation and low cellular stress. Cells were gradually adapted to these new media. Furthermore, using the Integra CELLine AD1000 culture flask we increased the number of cells and thereby EVs in 3D-culture. A combination of ultrafiltration with different molecular weight cut-offs and size-exclusion chromatography was further used for the isolation of a heterogeneous population of small EVs with low protein contamination. The EVs were characterized by nanoparticle tracking analysis, immunoaffinity capture, flow cytometry, Western blot and transmission electron microscopy. We successfully isolated a significant amount of small EVs compatible with exosomes from three distinct cell lines in order to demonstrate reproducibility with cell lines of different origin. The EVs were characterized as CD9 positive with a size between 60-140 nm. We conclude that this new combination of methods is a robust and improved strategy for the isolation of EVs, and in particular small EVs compatible with exosomes, from cell culture media without the use of specialized equipment such as an ultracentrifuge.
引用
收藏
页数:17
相关论文