Green's formula for integro-differential operators

被引:8
作者
Tokmagambetov, Niyaz [1 ,2 ]
Torebek, Berikbol T. [1 ,2 ]
机构
[1] Al Farabi Kazakh Natl Univ, 71 Al Farabi Ave, Alma Ata 050040, Kazakhstan
[2] Inst Math & Math Modeling, 125 Pushkin St, Alma Ata 050010, Kazakhstan
关键词
Caputo derivative; Rjemann-Liouville derivative; Self-adjoint problem; Fractional order differential equation; Fractional Sturm-Liouville operator; Extension theory; TIME FRACTIONAL DIFFUSION;
D O I
10.1016/j.jmaa.2018.08.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this report we establish Green's formula for an integro-differential operator, and apply it to describe a class of self-adjoint fractional order differential operators. A found symmetric fractional order Caputo-Riemann-Liouville type operator can be considered as a fractional analogue of the classical Sturm-Liouville operator in some sense. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:473 / 479
页数:7
相关论文
共 15 条
[1]  
Agarwal P, 2017, APPL NUMER HARMON AN, P707, DOI 10.1007/978-3-319-55556-0_9
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]   Space-time fractional diffusion on bounded domains [J].
Chen, Zhen-Qing ;
Meerschaert, Mark M. ;
Nane, Erkan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (02) :479-488
[4]   Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary [J].
Delgado, Julio ;
Ruzhansky, Michael ;
Tokmagambetov, Niyaz .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (06) :758-783
[5]   Schatten classes on compact manifolds: Kernel conditions [J].
Delgado, Julio ;
Ruzhansky, Michael .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (03) :772-798
[6]   Harnack's inequality for a space-time fractional diffusion equation and applications to an inverse source problem [J].
Jia, Junxiong ;
Peng, Jigen ;
Yang, Jiaqing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (08) :4415-4450
[7]   Fractional Sturm-Liouville problem [J].
Klimek, M. ;
Agrawal, O. P. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) :795-812
[8]   APPLICATIONS OF THE FRACTIONAL STURM-LIOUVILLE PROBLEM TO THE SPACE-TIME FRACTIONAL DIFFUSION IN A FINITE DOMAIN [J].
Klimek, Malgorzata ;
Malinowska, Agnieszka B. ;
Odzijewicz, Tatiana .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (02) :516-550
[9]  
Nakhushev A. M., 2003, Fractional Calculus and Its Applications
[10]   Nonharmonic Analysis of Boundary Value Problems Without WZ Condition [J].
Ruzhansky, M. ;
Tokmagambetov, N. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2017, 12 (01) :115-140