No Gap Second-order Optimality Conditions for a Matrix Cone Programming Induced by the Nuclear Norm

被引:0
作者
Zhang, Ning [1 ]
Zhang, Liwei [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Inst Operat Res & Control Theory, Dalian 116024, Peoples R China
关键词
Nuclear norm; second-order tangent set; sigma term; no gap second-order optimality conditions;
D O I
10.1142/S021759591650010X
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The first-order and the second-order directional derivatives of singular values are used to characterize the tangent cone, the normal cone and the second-order tangent set of the epigraph of the nuclear norm of matrices. Based on the variational geometry of the epigraph, the no gap second-order optimality conditions for the optimization problem, whose constraint is defined by the matrix cone induced by the nuclear norm, are established.
引用
收藏
页数:20
相关论文
共 11 条
[1]  
[Anonymous], 1996, PRINCETON MATH SER
[2]  
Bonnans J.F., 2013, PERTURBATION ANAL OP
[3]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[4]   An introduction to a class of matrix cone programming [J].
Ding, Chao ;
Sun, Defeng ;
Toh, Kim-Chuan .
MATHEMATICAL PROGRAMMING, 2014, 144 (1-2) :141-179
[5]   MATHEMATICAL PROGRAMS WITH GEOMETRIC CONSTRAINTS IN BANACH SPACES: ENHANCED OPTIMALITY, EXACT PENALTY, AND SENSITIVITY [J].
Guo, Lei ;
Ye, Jane J. ;
Zhang, Jin .
SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) :2295-2319
[6]  
Johnson C. R., 1991, TOPICS MATRIX ANAL
[7]   An implementable proximal point algorithmic framework for nuclear norm minimization [J].
Liu, Yong-Jin ;
Sun, Defeng ;
Toh, Kim-Chuan .
MATHEMATICAL PROGRAMMING, 2012, 133 (1-2) :399-436
[8]  
Rockafellar RT., 1998, VARIATIONAL ANAL
[9]   The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming [J].
Sun, Defeng ;
Sun, Jie ;
Zhang, Liwei .
MATHEMATICAL PROGRAMMING, 2008, 114 (02) :349-391
[10]   Second-order directional derivatives of all eigenvalues of a symmetric matrix [J].
Torki, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (08) :1133-1150