LOCAL INVERSE ESTIMATES FOR NON-LOCAL BOUNDARY INTEGRAL OPERATORS

被引:14
作者
Aurada, M. [1 ]
Feischl, M. [2 ]
Fuhrer, T. [3 ]
Karkulik, M. [4 ]
Melenk, J. M. [1 ]
Praetorius, D. [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, Wiedner Haupstr 8-10-A, A-1040 Vienna, Austria
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[3] Pontificia Univ Catolica Chile, Fac Matemat, Ave Vicuna Mackenna 4860, Santiago, Chile
[4] Univ Tecn Federico Santa Maria, Dept Matemat, Ave Espana 1680, Valparaiso, Chile
基金
奥地利科学基金会;
关键词
Boundary element method; inverse estimates; adaptivity; efficiency; hp-finite element spaces; POSTERIORI ERROR ESTIMATE; OPTIMAL CONVERGENCE-RATES; FINITE-ELEMENT-METHOD; NONSMOOTH FUNCTIONS; EQUATION; APPROXIMATION; INTERPOLATION; INEQUALITIES; ADAPTIVITY; OPTIMALITY;
D O I
10.1090/mcom/3175
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local inverse-type estimates for the four non-local boundary integral operators associated with the Laplace operator on a bounded Lipschitz domain Omega in R-d for d >= 2 with piecewise smooth boundary. For piecewise polynomial ansatz spaces and is an element of {2, 3}, the inverse estimates are explicit in both the local mesh width and the approximation order. An application to efficiency-type estimates in a posteriori error estimation in boundary element methods is given.
引用
收藏
页码:2651 / 2686
页数:36
相关论文
共 35 条
[11]   Residual-based a posteriori error estimate for hypersingular equation on surfaces - Dedicated to W. L. Wendland on the occasion of his 65th birthday [J].
Carstensen, C ;
Maischak, M ;
Praetorius, D ;
Stephan, EP .
NUMERISCHE MATHEMATIK, 2004, 97 (03) :397-425
[12]   A posteriori error estimate and h-adaptive algorithm on surfaces for Symm's integral equation [J].
Carstensen, C ;
Maischak, M ;
Stephan, EP .
NUMERISCHE MATHEMATIK, 2001, 90 (02) :197-213
[13]   An a posteriori error estimate for a first-kind integral equation [J].
Carstensen, C .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :139-155
[14]   Quasi-optimal convergence rate for an adaptive finite element method [J].
Cascon, J. Manuel ;
Kreuzer, Christian ;
Nochetto, Ricardo H. ;
Siebert, Kunibert G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) :2524-2550
[15]  
Dahmen W, 2004, MATH COMPUT, V73, P1107
[16]  
DEVORE R. A., 1993, GRUND MATH WISS, V303, DOI DOI 10.1007/978-3-662-02888-9
[17]  
DUPONT T, 1980, MATH COMPUT, V34, P441, DOI 10.1090/S0025-5718-1980-0559195-7
[18]  
Evans L. C., 1992, Studies in Advanced Mathematics
[19]  
Federer H., 1996, GEOMETRIC MEASURE TH, DOI DOI 10.1007/978-3-642-62010-2
[20]   QUASI-OPTIMAL CONVERGENCE RATE FOR AN ADAPTIVE BOUNDARY ELEMENT METHOD [J].
Feischl, M. ;
Karkulik, M. ;
Melenk, J. M. ;
Praetorius, D. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) :1327-1348