LOCAL INVERSE ESTIMATES FOR NON-LOCAL BOUNDARY INTEGRAL OPERATORS

被引:14
作者
Aurada, M. [1 ]
Feischl, M. [2 ]
Fuhrer, T. [3 ]
Karkulik, M. [4 ]
Melenk, J. M. [1 ]
Praetorius, D. [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, Wiedner Haupstr 8-10-A, A-1040 Vienna, Austria
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[3] Pontificia Univ Catolica Chile, Fac Matemat, Ave Vicuna Mackenna 4860, Santiago, Chile
[4] Univ Tecn Federico Santa Maria, Dept Matemat, Ave Espana 1680, Valparaiso, Chile
基金
奥地利科学基金会;
关键词
Boundary element method; inverse estimates; adaptivity; efficiency; hp-finite element spaces; POSTERIORI ERROR ESTIMATE; OPTIMAL CONVERGENCE-RATES; FINITE-ELEMENT-METHOD; NONSMOOTH FUNCTIONS; EQUATION; APPROXIMATION; INTERPOLATION; INEQUALITIES; ADAPTIVITY; OPTIMALITY;
D O I
10.1090/mcom/3175
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local inverse-type estimates for the four non-local boundary integral operators associated with the Laplace operator on a bounded Lipschitz domain Omega in R-d for d >= 2 with piecewise smooth boundary. For piecewise polynomial ansatz spaces and is an element of {2, 3}, the inverse estimates are explicit in both the local mesh width and the approximation order. An application to efficiency-type estimates in a posteriori error estimation in boundary element methods is given.
引用
收藏
页码:2651 / 2686
页数:36
相关论文
共 35 条
[1]  
[Anonymous], 2003, SOBOLEV SPACES
[2]  
[Anonymous], 2008, APPL MATH SCI, DOI DOI 10.1007/978-3-540-68545-6
[3]  
[Anonymous], 2000, STRONGLY ELLIPTIC SY
[4]  
[Anonymous], 1970, PRINCETON MATH SER
[5]  
Aurada M., 2012, ARXIV12114360 ASC
[6]   Efficiency and Optimality of Some Weighted-Residual Error Estimator for Adaptive 2D Boundary Element Methods [J].
Aurada, Markus ;
Feischl, Michael ;
Fuehrer, Thomas ;
Karkulik, Michael ;
Praetorius, Dirk .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2013, 13 (03) :305-332
[7]   Energy norm based error estimators for adaptive BEM for hypersingular integral equations [J].
Aurada, Markus ;
Feischl, Michael ;
Fuehrer, Thomas ;
Karkulik, Michael ;
Praetorius, Dirk .
APPLIED NUMERICAL MATHEMATICS, 2015, 95 :15-35
[8]   Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity [J].
Aurada, Markus ;
Feischl, Michael ;
Fuehrer, Thomas ;
Karkulik, Michael ;
Melenk, Jens Markus ;
Praetorius, Dirk .
COMPUTATIONAL MECHANICS, 2013, 51 (04) :399-419
[9]   Averaging techniques for the effective numerical solution of Symm's integral equation of the first kind [J].
Carstensen, C ;
Praetorius, D .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (04) :1226-1260
[10]   Axioms of adaptivity [J].
Carstensen, C. ;
Feischl, M. ;
Page, M. ;
Praetorius, D. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (06) :1195-1253