Phenylpropanoid Biosynthesis

被引:2264
作者
Vogt, Thomas [1 ]
机构
[1] Leibniz Inst Plant Biochem, Dept Secondary Metab, D-06120 Halle, Saale, Germany
关键词
Phenylpropanoid; biosynthetic pathway; flavonoid; anthocyanin; tannin; coumarin; volatiles; lignin; PHENYLALANINE AMMONIA-LYASE; BENZOIC-ACID BIOSYNTHESIS; MYB TRANSCRIPTION FACTOR; CARBOXYPEPTIDASE-LIKE ACYLTRANSFERASES; DEPENDENT O-METHYLTRANSFERASE; PLANT SECONDARY METABOLISM; III POLYKETIDE SYNTHASE; ARABIDOPSIS-THALIANA; SALICYLIC-ACID; PROANTHOCYANIDIN BIOSYNTHESIS;
D O I
10.1093/mp/ssp106
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The general phenylpropanoid metabolism generates an enormous array of secondary metabolites based on the few intermediates of the shikimate pathway as the core unit. The resulting hydroxycinnamic acids and esters are amplified in several cascades by a combination of reductases, oxygenases, and transferases to result in an organ and developmentally specific pattern of metabolites, characteristic for each plant species. During the last decade, methodology driven targeted and non-targeted approaches in several plant species have enabled the identification of the participating enzymes of this complex biosynthetic machinery, and revealed numerous genes, enzymes, and metabolites essential for regulation and compartmentation. Considerable success in structural and computational biology, combined with the analytical sensitivity to detect even trace compounds and smallest changes in the metabolite, transcript, or enzyme pattern, has facilitated progress towards a comprehensive view of the plant response to its biotic and abiotic environment. Transgenic approaches have been used to reveal insights into an apparently redundant gene and enzyme pattern required for functional integrity and plasticity of the various phenylpropanoid biosynthetic pathways. Nevertheless, the function and impact of all members of a gene family remain to be completely established. This review aims to give an update on the various facets of the general phenylpropanoid pathway, which is not only restricted to common lignin or flavonoid biosynthesis, but feeds into a variety of other aromatic metabolites like coumarins, phenolic volatiles, or hydrolyzable tannins.
引用
收藏
页码:2 / 20
页数:19
相关论文
共 197 条
[1]   Benzoic acid biosynthesis in cell cultures of Hypericum androsaemum [J].
Abd El-Mawla, AMA ;
Beerhues, L .
PLANTA, 2002, 214 (05) :727-733
[2]   A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth [J].
Abdulrazzak, N ;
Pollet, B ;
Ehlting, J ;
Larsen, K ;
Asnaghi, C ;
Ronseau, S ;
Proux, C ;
Erhardt, M ;
Seltzer, V ;
Renou, JP ;
Ullmann, P ;
Pauly, M ;
Lapierre, C ;
Werck-Reichhart, D .
PLANT PHYSIOLOGY, 2006, 140 (01) :30-48
[3]   MYB transcription factors that colour our fruit [J].
Allan, Andrew C. ;
Hellens, Roger P. ;
Laing, William A. .
TRENDS IN PLANT SCIENCE, 2008, 13 (03) :99-102
[4]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[5]   Global expression profiling applied to the analysis of Arabidopsis stamen development [J].
Alves-Ferreira, Marcio ;
Wellmer, Frank ;
Banhara, Aline ;
Kumar, Vijaya ;
Riechmann, Jose Luis ;
Meyerowitz, Elliot M. .
PLANT PHYSIOLOGY, 2007, 145 (03) :747-762
[6]   Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity [J].
Anterola, AM ;
Lewis, NG .
PHYTOCHEMISTRY, 2002, 61 (03) :221-294
[7]   Flavonoids of leguminous plants: Structure, biological activity, and biosynthesis [J].
Aoki, T ;
Akashi, T ;
Ayabe, S .
JOURNAL OF PLANT RESEARCH, 2000, 113 (1112) :475-488
[8]   Allelopathy and exotic plant invasion: From molecules and genes to species interactions [J].
Bais, HP ;
Vepachedu, R ;
Gilroy, S ;
Callaway, RM ;
Vivanco, JM .
SCIENCE, 2003, 301 (5638) :1377-1380
[9]   Ellagitannins have greater oxidative activities than condensed tannins and galloyl glucoses at high pH: Potential impact on caterpillars [J].
Barbehenn, Raymond V. ;
Jones, Christopher P. ;
Hagerman, Ann E. ;
Karonen, Maarit ;
Salminen, Juha-Pekka .
JOURNAL OF CHEMICAL ECOLOGY, 2006, 32 (10) :2253-2267
[10]   Positive selection for single amino acid change promotes substrate discrimination of a plant volatile-producing enzyme [J].
Barkman, Todd J. ;
Martins, Talline R. ;
Sutton, Elizabeth ;
Stout, John T. .
MOLECULAR BIOLOGY AND EVOLUTION, 2007, 24 (06) :1320-1329