Neural stem/progenitor cells express 20 Tenascin C isoforms that are differentially regulated by Pax6

被引:73
作者
von Holst, Alexander
Egbers, Ursula
Prochiantz, Alain
Faissner, Andreas
机构
[1] Ruhr Univ Bochum, Dept Cell Morphol & Mol Neurobiol, D-44780 Bochum, Germany
[2] Ecole Normale Super, CNRS UMR 8542, F-75005 Paris, France
关键词
D O I
10.1074/jbc.M608067200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tenascin C (Tnc) is an alternatively spliced, multimodular extracellular matrix glycoprotein present in the ventricular zone of the developing brain. Pax6-deficient small eye (sey) mouse mutants show an altered Tnc expression pattern. Here, we investigated the expression of Tnc isoforms in neural stem/progenitor cells and their regulation by the paired-box transcription factor Pax6. Neural stem/progenitor cells cultured as neurospheres strongly expressed Tnc on the protein level. The Tnc isoform expression in neural stem/progenitor cells was analyzed by reverse transcriptase-PCR and dot blot Southern hybridization: In total, 20 different Tnc isoforms were detected in neurospheres derived from embryonic forebrain cell suspensions. The Tnc isoform containing the fibronectin type III domains A1A4BD is novel and might be neural stem/progenitor cell-specific. Transient overexpression of Pax6 in neurospheres of the medial ganglionic eminence did not alter the total Tnc mRNA expression level but showed a pronounced regulative effect on different Tnc isoforms. The larger Tnc isoforms containing four, five, and six additional alternatively spliced fibronectin type III domains were up-regulated, whereas the small Tnc isoforms without any or with one additional domain were down-regulated. Thus, Pax6 is a homeodomain protein that also modulates the splicing machinery. We conclude that the combinatorial code of Tnc isoform expression in the neural stem/progenitor cell is complex and regulated by Pax6. These findings suggest a functional significance for individual Tnc isoforms in neural stem/progenitor cells.
引用
收藏
页码:9172 / 9181
页数:10
相关论文
共 48 条
[1]  
Ba-Charvet KTN, 1998, DEVELOPMENT, V125, P4273
[2]   An internet-accessible database of mouse developmental anatomy based on a systematic nomenclature [J].
Bard, JBL ;
Kaufman, MH ;
Dubreuil, C ;
Brune, RM ;
Burger, A ;
Baldock, RA ;
Davidson, DR .
MECHANISMS OF DEVELOPMENT, 1998, 74 (1-2) :111-120
[3]  
BARTSCH S, 1992, J NEUROSCI, V12, P736
[4]   β1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance [J].
Campos, LS ;
Leone, DP ;
Relvas, JB ;
Brakebusch, C ;
Fässler, R ;
Suter, U ;
ffrench-Constant, C .
DEVELOPMENT, 2004, 131 (14) :3433-3444
[5]   Identification of a glioblastoma-associated tenascin-C isoform by a high affinity recombinant antibody [J].
Carnemolla, B ;
Castellani, P ;
Ponassi, M ;
Borsi, L ;
Urbini, S ;
Nicolo, G ;
Dorcaratto, A ;
Viale, G ;
Winter, G ;
Neri, D ;
Zardi, L .
AMERICAN JOURNAL OF PATHOLOGY, 1999, 154 (05) :1345-1352
[6]   Tenascins: regulation and putative functions during pathological stress [J].
Chiquet-Ehrismann, R ;
Chiquet, M .
JOURNAL OF PATHOLOGY, 2003, 200 (04) :488-499
[7]   Multiple promoter elements differentially regulate the expression of the mouse tenascin gene [J].
Copertino, DW ;
Edelman, GM ;
Jones, FS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (05) :1846-1851
[8]   DNA-SEQUENCE RECOGNITION BY PAX PROTEINS - BIPARTITE STRUCTURE OF THE PAIRED DOMAIN AND ITS BINDING-SITE [J].
CZERNY, T ;
SCHAFFNER, G ;
BUSSLINGER, M .
GENES & DEVELOPMENT, 1993, 7 (10) :2048-2061
[9]   Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells [J].
D'Amour, KA ;
Gage, FH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 :11866-11872
[10]   Cancer - Stem cells and brain tumours [J].
Dirks, Peter B. .
NATURE, 2006, 444 (7120) :687-688