Relative enumerative invariants of real nodal del Pezzo surfaces

被引:4
作者
Itenberg, Ilia [1 ,2 ]
Kharlamov, Viatcheslav [3 ,4 ]
Shustin, Eugenii [5 ]
机构
[1] Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, 4 Pl Jussieu, F-75252 Paris 5, France
[2] Ecole Normale Super, Dept Math & Applicat, 45 Rue Ulm, F-75230 Paris 5, France
[3] Univ Strasbourg, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[4] IRMA, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[5] Tel Aviv Univ, Sch Math Sci, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Ramat Aviv, Israel
来源
SELECTA MATHEMATICA-NEW SERIES | 2018年 / 24卷 / 04期
关键词
WELSCHINGER INVARIANTS; DEFORMATIONS; CURVES;
D O I
10.1007/s00029-018-0418-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The surfaces considered are real, rational and have a unique smooth real (-2)-curve. Their canonical class K is strictly negative on any other irreducible curve in the surface and K-2 > 0. For surfaces satisfying these assumptions, we suggest a certain signed count of real rational curves that belong to a given divisor class and are simply tangent to the (-2)-curve at each intersection point. We prove that this count provides a number which depends neither on the point constraints nor on deformation of the surface preserving the real structure and the (-2)-curve.
引用
收藏
页码:2927 / 2990
页数:64
相关论文
共 24 条
  • [1] [Anonymous], 1999, RATIONAL CURVES ALGE
  • [2] Brugalle E., ARXIV160105708
  • [3] On Welschinger invariants of symplectic 4-manifolds
    Brugalle, Erwan
    Puignau, Nicolas
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2015, 90 (04) : 905 - 938
  • [4] Counting plane curves of any genus
    Caporaso, L
    Harris, J
    [J]. INVENTIONES MATHEMATICAE, 1998, 131 (02) : 345 - 392
  • [5] Deligne P., 1970, Equations differentielles a points singuliers reguliers, DOI DOI 10.1007/BFB0061194
  • [6] DEMAZURE M, 1976, SEMINAIRE SINGULARIT
  • [7] IDEALS ASSOCIATED TO DEFORMATIONS OF SINGULAR PLANE-CURVES
    DIAZ, S
    HARRIS, J
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 309 (02) : 433 - 467
  • [8] Dolgachev I.V, 2013, CLASSICAL ALGEBRAIC
  • [9] Fulton W., 1997, P S PURE MATH, V62, P45
  • [10] GUDKOV DA, 1984, LECT NOTES MATH, V1060, P278