A study of Darcy-Benard regular and chaotic convection using a new local thermal non-equilibrium formulation

被引:19
作者
Siddheshwar, P. G. [1 ]
Kanchana, C. [2 ]
Laroze, D. [3 ]
机构
[1] CHRIST Deemed Univ, Dept Math, Bengaluru 560029, India
[2] Univ Tarapaca, Inst Alta Invest, Sede Esmeralda, Ave Luis Emilio Recabarren 2477, Iquique, Chile
[3] Univ Tarapaca, Inst Alta Invest CEDENNA, Casilla 7 D, Arica, Chile
关键词
NONLINEAR STABILITY ANALYSIS; POROUS-MEDIA; BRINKMAN CONVECTION; VISCOUS DISSIPATION; HEAT; ONSET; FLUID; EQUILIBRIUM; ROUTE; FLOW;
D O I
10.1063/5.0046358
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The onset of Darcy-Benard regular and chaotic convection in a porous medium is studied by considering phase-lag effects that naturally arise in the thermal non-equilibrium heat transfer problem between the fluid and solid phases. A new type of heat equation is derived for both the phases. Using a double Fourier series and a novel decomposition, an extended Vadasz-Lorenz model with three phase-lag effects is derived. New parameters arise due to the phase-lag effects between local acceleration, convective acceleration, and thermal diffusion. The principle of exchange of stabilities is found to be valid and the subcritical instability is discounted. The new perspective supports the finding of an analytical expression for the critical Darcy-Rayleigh numbers representing, respectively, the onset of regular and chaotic convection. The understanding of the transition from the local thermal non-equilibrium situation to the local thermal equilibrium one is also best explained through the new perspective. In its present elegant form, the extended Vadasz-Lorenz system with three phase-lag effects is analyzed using the largest Lyapunov exponent and the bifurcation diagram. It is found that the lag effects not only give rise to a quantitative difference in the above two metrics concerning chaos, but also present a qualitative difference as well in the form of the very nature of chaos.
引用
收藏
页数:17
相关论文
共 72 条
[1]  
[Anonymous], 2010, STABILITY WAVE MOTIO
[2]   Heating by means of streaming media [J].
Anzelius, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1926, 6 :291-294
[3]   CFD analysis of high frequency miniature pulse tube refrigerators for space applications with thermal non-equilibrium model [J].
Ashwin, T. R. ;
Narasimham, G. S. V. L. ;
Jacob, Subhash .
APPLIED THERMAL ENGINEERING, 2010, 30 (2-3) :152-166
[4]   Onset of Darcy-Benard convection using a thermal non-equilibrium model [J].
Banu, N ;
Rees, DAS .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (11) :2221-2228
[5]   Thermosolutal convective instability and viscous dissipation effect in a fluid-saturated porous medium [J].
Barletta, A. ;
Nield, D. A. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (7-8) :1641-1648
[6]   Local thermal non-equilibrium flow with viscous dissipation in a plane horizontal porous layer [J].
Barletta, A. ;
Celli, M. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (01) :53-60
[7]   Stability analysis of dual adiabatic flows in a horizontal porous layer [J].
Barletta, A. ;
Rees, D. A. S. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (9-10) :2300-2310
[8]   The onset of convection in a porous layer induced by viscous dissipation: A linear stability analysis [J].
Barletta, A. ;
Celli, M. ;
Rees, D. A. S. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (1-2) :337-344
[9]   Bounds for the chaotic region in the Lorenz model [J].
Barrio, Roberto ;
Serrano, Sergio .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (16) :1615-1624
[10]   Free convection in a square porous cavity using a thermal nonequilibrium model [J].
Baytas, AC ;
Pop, L .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2002, 41 (09) :861-870