HERMITIAN SYMMETRIC SPACES OF TUBE TYPE AND MULTIVARIATE MEIXNER-POLLACZEK POLYNOMIALS

被引:1
作者
Faraut, Jacques [1 ]
Wakayama, Masato [2 ]
机构
[1] Univ Paris 06, Inst Math Jussieu, 4 Pl Jussieu,Case 247, F-75252 Paris 05, France
[2] Kyushu Univ, Inst Math Ind, Nishi Ku, Fukuoka 8190395, Japan
关键词
RECURSION-RELATIONS; LAGUERRE FUNCTIONS; CONES;
D O I
10.7146/math.scand.a-25506
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Harmonic analysis on Hermitian symmetric spaces of tube type is a natural framework for introducing multivariate Meixner-Pollaczek polynomials. Their main properties are established in this setting: orthogonality, generating and determinantal formulae, difference equations. For proving these properties we use the composition of the following transformations: Cayley transform, Laplace transform, and spherical Fourier transform associated to Hermitian symmetric spaces of tube type. In particular the difference equation for the multivariate Meixner-Pollaczek polynomials is obtained from an Euler type equation on a bounded symmetric domain.
引用
收藏
页码:87 / 114
页数:28
相关论文
共 16 条