Toward autonomous surface-based infrared remote sensing of polar clouds: retrievals of cloud optical and microphysical properties

被引:10
作者
Rowe, Penny M. [1 ,2 ]
Cox, Christopher J. [3 ,4 ]
Neshyba, Steven [5 ]
Walden, Von P. [6 ]
机构
[1] NorthWest Res Associates, Redmond, WA 98052 USA
[2] Univ Santiago Chile, Dept Phys, Santiago, Chile
[3] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[4] NOAA, Earth Syst Res Lab, Phys Sci Div, Boulder, CO USA
[5] Univ Puget Sound, Chem Dept, Tacoma, WA 98416 USA
[6] Washington State Univ, Dept Civil & Environm Engn, Pullman, WA 99164 USA
基金
美国国家科学基金会;
关键词
REFRACTIVE-INDEXES; RADIATIVE-TRANSFER; PART II; WATER; PHASE; ATMOSPHERE; ALGORITHM; SPECTRA;
D O I
10.5194/amt-12-5071-2019
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Improvements to climate model results in polar regions require improved knowledge of cloud properties. Surface-based infrared (IR) radiance spectrometers have been used to retrieve cloud properties in polar regions, but measurements are sparse. Reductions in cost and power requirements to allow more widespread measurements could be aided by reducing instrument resolution. Here we explore the effects of errors and instrument resolution on cloud property retrievals from downwelling IR radiances for resolutions of 0.1 to 20 cm(-1). Retrievals are tested on 336 radiance simulations characteristic of the Arctic, including mixed-phase, vertically inhomogeneous, and liquid-topped clouds and a variety of ice habits. Retrieval accuracy is found to be unaffected by resolution from 0.1 to 4 cm(-1), after which it decreases slightly. When cloud heights are retrieved, errors in retrieved cloud optical depth (COD) and ice fraction are considerably smaller for clouds with bases below 2 km than for higher clouds. For example, at a resolution of 4 cm(-1), with errors imposed (noise and radiation bias of 0.2 mW/(m(2) sr cm(-1)) and biases in temperature of 0.2 K and in water vapor of -3 %), using retrieved cloud heights, root-mean-square errors decrease from 1.1 to 0.15 for COD, 0.3 to 0.18 for ice fraction (f(ice)), and 10 to 7 mu m for ice effective radius (errors remain at 2 mu m for liquid effective radius). These results indicate that a moderately low-resolution, surface-based IR spectrometer could provide cloud property retrievals with accuracy comparable to existing higher-resolution instruments and that such an instrument would be particularly useful for low-level clouds.
引用
收藏
页码:5071 / 5086
页数:16
相关论文
共 47 条
[1]   TROPOSPHERIC CLOUDS IN ANTARCTICA [J].
Bromwich, David H. ;
Nicolas, Julien P. ;
Hines, Keith M. ;
Kay, Jennifer E. ;
Key, Erica L. ;
Lazzara, Matthew A. ;
Lubin, Dan ;
McFarquhar, Greg M. ;
Gorodetskaya, Irina V. ;
Grosvenor, Daniel P. ;
Lachlan-Cope, Thomas ;
van Lipzig, Nicole P. M. .
REVIEWS OF GEOPHYSICS, 2012, 50
[2]   LINE-BY-LINE CALCULATIONS OF ATMOSPHERIC FLUXES AND COOLING RATES - APPLICATION TO WATER-VAPOR [J].
CLOUGH, SA ;
IACONO, MJ ;
MONCET, JL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D14) :15761-15785
[3]   Atmospheric radiative transfer modeling: a summary of the AER codes [J].
Clough, SA ;
Shephard, MW ;
Mlawer, E ;
Delamere, JS ;
Iacono, M ;
Cady-Pereira, K ;
Boukabara, S ;
Brown, PD .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2005, 91 (02) :233-244
[4]   A synthetic data set of high-spectral-resolution infrared spectra for the Arctic atmosphere [J].
Cox, Christopher J. ;
Rowe, Penny M. ;
Neshyba, Steven P. ;
Walden, Von P. .
EARTH SYSTEM SCIENCE DATA, 2016, 8 (01) :199-211
[5]   Humidity trends imply increased sensitivity to clouds in a warming Arctic [J].
Cox, Christopher J. ;
Walden, Von P. ;
Rowe, Penny M. ;
Shupe, Matthew D. .
NATURE COMMUNICATIONS, 2015, 6
[6]   Cloud Microphysical Properties Retrieved from Downwelling Infrared Radiance Measurements Made at Eureka, Nunavut, Canada (2006-09) [J].
Cox, Christopher J. ;
Turner, David D. ;
Rowe, Penny M. ;
Shupe, Matthew D. ;
Walden, Von P. .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2014, 53 (03) :772-791
[7]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[8]  
Francis J.A., 2006, Eos, V87, P509, DOI [10.1029/2006EO460001., DOI 10.1029/2006EO460001]
[9]   Ground-based remote sensing of thin clouds in the Arctic [J].
Garrett, T. J. ;
Zhao, C. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (05) :1227-1243
[10]  
Hines KM, 2004, J CLIMATE, V17, P1198, DOI 10.1175/1520-0442(2004)017<1198:ACARWT>2.0.CO