Henon-Devaney like maps

被引:3
|
作者
Leal, Bladismir [1 ,2 ]
Munoz, Sergio [3 ]
机构
[1] Univ Tecn Manabi, Inst Ciencias Basicas, Av Jose Maria Urbina, Portoviejo, Ecuador
[2] Univ Nacl Chimborazo, Fac Ingn, Via Guano Km 1-5, Riobamba, Ecuador
[3] Univ Estado Rio de Janeiro, Dept Matemat Fis & Comp, Fac Tecnol, Resende, Brazil
关键词
transitivity; expansiveness; non-compact transitive invariant sets; homeomorphisms with singularities; Hé non– Devaney map;
D O I
10.1088/1361-6544/abdd95
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a general theorem characterizing the transitivity of homeomorphisms with singularities in the plane. We provide examples where this theorem applies including the classical Henon-Devaney map (1981 Commun. Math. Phys. 80 465-476). We also prove some results about the plane homeomorphisms satisfying the hypothesis of our theorem namely the Henon-Devaney like maps. Indeed, we show that the maximal invariant set of a Henon-Devaney like map is topologically conjugated to a shift map. Furthermore, every Henon-Devaney like map is fixed point free with dense periodic orbits. This generalizes some constructions by Devaney (1981 Commun. Math. Phys. 80 465-476) and Lenarduzzi (2015 Discrete Continuous Dyn. Syst. 35 1163-1177).
引用
收藏
页码:2878 / 2896
页数:19
相关论文
共 50 条
  • [1] RECODING THE CLASSICAL HENON-DEVANEY MAP
    Lenarduzzi, Fernando
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (07) : 4073 - 4092
  • [2] GLOBAL ATTRACTORS IN THE PARAMETRIZED HENON-DEVANEY MAP
    Leal, Bladismir
    Munoz, Sergio
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2023, 65 (01): : 79 - 101
  • [3] Invariant Cantor sets in the parametrized Henon-Devaney map
    Leal, Bladismir
    Munoz, Sergio
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2022, 37 (01): : 105 - 126
  • [4] On a Homoclinic Origin of Henon-like Maps
    Gonchenko, S. V.
    Gonchenko, V. S.
    Shilnikov, L. P.
    REGULAR & CHAOTIC DYNAMICS, 2010, 15 (4-5): : 462 - 481
  • [5] Bifurcation analysis of Henon-like maps
    Djellit, Ilham
    Selmani, Wissame
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2019, 10 (02) : 140 - 149
  • [6] REVERSIBLE PERTURBATIONS OF CONSERVATIVE HENON-LIKE MAPS
    Gonchenko, Marina
    Gonchenko, Sergey
    Safonov, Klim
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (04) : 1875 - 1895
  • [7] Renormalizable Henon-like maps and unbounded geometry
    Hazard, P. E.
    Lyubich, M.
    Martens, M.
    NONLINEARITY, 2012, 25 (02) : 397 - 420
  • [8] Henon-like maps with arbitrary stationary combinatorics
    Hazard, P. E.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 : 1391 - 1443
  • [9] Examples of Lorenz-like Attractors in Henon-like Maps
    Gonchenko, S. V.
    Gonchenko, A. S.
    Ovsyannikov, I. I.
    Turaev, D. V.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2013, 8 (05) : 48 - 70
  • [10] Snail-like pattern generation with the Henon family of maps
    Romera, M
    Bañuls, V
    Pastor, G
    Alvarez, G
    Montoya, F
    COMPUTERS & GRAPHICS-UK, 2001, 25 (03): : 529 - 537