In this study, threshold voltage (V-th) variability was investigated in silicon nanowire field-effect transistors (SNWFETs) with short gate-lengths of 15-22 nm and various channel diameters (D-NW) of 7, 9, and 12 nm. Linear slope and nonzero y-intercept were observed in a Pelgrom plot of the standard deviation of V-th (sigma V-th), which originated from random and process variations. Interestingly, the slope and y-intercept differed for each D-NW, and sigma V-th was the smallest at a median D-NW of 9 nm. To analyze the observed D-NW tendency of sigma V-th, a novel modeling approach based on the error propagation law was proposed. The contribution of gate-metal work function, channel dopant concentration (N-ch), and D-NW variations (WFV, increment N-ch, and increment D-NW) to sigma V-th were evaluated by directly fitting the developed model to measured sigma V-th. As a result, WFV induced by metal gate granularity increased as channel area increases, and the slope of WFV in Pelgrom plot is similar to that of sigma V-th. As D-NW decreased, SNWFETs became robust to increment N-ch but vulnerable to increment D-NW. Consequently, the contribution of increment D-NW, WFV, and increment N-ch is dominant at D-NW of 7 nm, 9 nm, and 12, respectively. The proposed model enables the quantifying of the contribution of various variation sources of V-th variation, and it is applicable to all SNWFETs with various L-G and D-NW.