Singular strictly monotone functions

被引:2
作者
Ryabinin, AA [1 ]
Bystritskii, VD [1 ]
Il'ichev, VA [1 ]
机构
[1] NI Lobachevskii State Univ, Nizhnii Novgorod, Russia
关键词
singular strictly monotone function; random permutation of signs; Salem function; cylinder set; Borel space; Fourier-Stieltjes transformation;
D O I
10.1023/B:MATN.0000043468.33152.2d
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a universal approach to constructing continuous strictly monotone increasing singular functions on the closed interval [-1, 1]. The "generator" of the method is the series Sigma(k=1)(infinity) +/-2(-k) with random permutation of signs, and the corresponding functions are generated as distribution functions of such series. As examples, we consider two stochastic methods of arranging signs: independent and Markov.
引用
收藏
页码:407 / 419
页数:13
相关论文
共 10 条
[1]  
[Anonymous], 1938, J MATH PURE APPL
[2]  
DERHAM G, 1956, REND SEM MATEM U TOR, P101
[3]  
LAMPERTI J, 1966, PROBABILITY SURVEY M
[4]  
MARKUSHEVICH A., 1967, THEORY ANAL FUNCTION, V1
[5]  
Minkowski H., 1911, Gesammeine Abhandlungen, V2, P50
[6]  
PARTHASARATHY K, 1980, INTO PROBABILITY MEA
[7]  
RIESZ F, 1965, LECONS ANAL FONCTION
[8]  
Ryabinin A.A., 2000, TEOR VEROYA PRIMEN, V45, P773
[9]  
SAKS S, 1939, THEORY INTEGRAL
[10]   On some singular monotonic functions which are strictly increasing [J].
Salem, R. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1943, 53 (1-3) :427-439