Density functional studies of olivine-type LiFePO4 and NaFePO4 as positive electrode materials for rechargeable lithium and sodium ion batteries

被引:63
作者
Nakayama, Masanobu [1 ,2 ,3 ,4 ]
Yamada, Shohei [1 ]
Jalem, Randy [3 ,4 ]
Kasuga, Toshihiro [5 ]
机构
[1] Nagoya Inst Technol, Dept Mat Sci & Engn, Showa Ku, Nagoya, Aichi 4668555, Japan
[2] Japan Sci & Technol Agcy, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[3] Kyoto Univ, Unit Elements Strategy Initiat Catalysts & Batter, Saikyo Ku, Kyoto 6158520, Japan
[4] Natl Inst Mat Sci, Grobal Res Ctr Environm & Energy Based Nanomat Sc, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[5] Nagoya Inst Technol, Dept Frontier Mat, Showa Ku, Nagoya, Aichi 4668555, Japan
基金
日本科学技术振兴机构;
关键词
Sodium ion battery; Ion conductive ceramics; Olivine-type structure; Density functional theory; TOTAL-ENERGY CALCULATIONS; AB-INITIO; CATHODE MATERIALS; PHOSPHO-OLIVINES; PARTICLE-SIZE; METAL-OXIDES; DIFFUSION; LI; 1ST-PRINCIPLES; INTERCALATION;
D O I
10.1016/j.ssi.2015.12.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Olivine-type LiFePO4 is a positive electrode material for rechargeable Li ion batteries with high power density (i.e. ability of fast charge-discharge rates). However, its Na alternative, olivine-type NaFePO4, has a low power density as an electrode material for Na ion batteries. To understand the large difference of power density between LiFePO4 and NaFePO4, their ion and electron transport properties are investigated by first-principles density functional theory (DFT). In the present DFT studies, no significant difference is obsereved in electronic migration energies in both bulk LiFePO4 and NaFePO4. On the other hand, the migration energy of sodium ion in NaFePO4 is 0.05 eV higher than that of lithium ion in LiFePO4, which may account for slow kinetics in NaFePO4 electrode. Further studies of the phase stability and alkaline ion migration at the interfaces between the two phases of (Li/Na)FePO4 and FePO4 suggest that the difference in rate performance between LiFePO4 and NaFePO4 is related to the formation of this interface. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:40 / 44
页数:5
相关论文
共 50 条
[41]   A Simple and Low-cost Synthesis Strategy of LiFePO4 Nanoparticles as Cathode Materials for Lithium Ion Batteries [J].
Zhu, Huiting ;
Miao, Cui ;
Guo, Ruitong ;
Liu, Ying ;
Wang, Xingyao .
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (03) :1-12
[42]   Thin Film Electrodes Derived from Nano Structured Carbon Coated LiFePO4 Composite for Rechargeable Lithium Ion Batteries [J].
Praveen, P. ;
Ravi, Soumya ;
Soumya, M. S. ;
Binitha, G. ;
Balakrishnan, A. ;
Subramanian, K. R. V. ;
Nair, V. Shantikumar ;
Sivakumar, N. .
SCIENCE OF ADVANCED MATERIALS, 2013, 5 (12) :2021-2026
[43]   Characterization and Electrochemical Performance of ZnO Modified LiFePO4/C Cathode Materials for Lithium-ion Batteries [J].
Liu Shu-Xin ;
Yin Heng-Bo ;
Wang Hai-Bin ;
He Ji-Chuan ;
Wang Hong .
CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2014, 33 (03) :353-360
[44]   Characterization and Electrochemical Performance of ZnO Modified LiFePO4/C Cathode Materials for Lithium-ion Batteries [J].
刘树信 ;
殷恒波 ;
王海滨 ;
何冀川 ;
王洪 .
Chinese Journal of Structural Chemistry, 2014, 33 (03) :353-360
[45]   Mesoporous LiFePO4/C Nanocomposite Cathode Materials for High Power Lithium Ion Batteries with Superior Performance [J].
Wang, Guoxiu ;
Liu, Hao ;
Liu, Jian ;
Qiao, Shizhang ;
Lu, Gaoqing Max ;
Munroe, Paul ;
Ahn, Hyojun .
ADVANCED MATERIALS, 2010, 22 (44) :4944-+
[46]   Polymer-Templated LiFePO4/C Nanonetworks as High-Performance Cathode Materials for Lithium-Ion Batteries [J].
Fischer, Michael G. ;
Hua, Xiao ;
Wilts, Bodo D. ;
Castillo-Martinez, Elizabeth ;
Steiner, Ullrich .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (02) :1646-1653
[47]   Polyvinylpyrrolidone-assisted synthesis of microscale C-LiFePO4 with high tap density as positive electrode materials for lithium batteries [J].
Oh, Sung Woo ;
Myung, Seung-Taek ;
Oh, Seung-Min ;
Yoon, Chong Seung ;
Amine, Khalil ;
Sun, Yang-Kook .
ELECTROCHIMICA ACTA, 2010, 55 (03) :1193-1199
[48]   Nanostructured and nanoporous LiFePO4 and LiNi0.5Mn1.5O4-δ as cathode materials for lithium-ion batteries [J].
Kraas, Sebastian ;
Vijn, Annalena ;
Falk, Mareike ;
Ufer, Boris ;
Luerssen, Bjoern ;
Janek, Juergen ;
Froeba, Michael .
PROGRESS IN SOLID STATE CHEMISTRY, 2014, 42 (04) :218-241
[49]   Recycling of LiFePO4 cathode materials from spent lithium-ion batteries through ultrasound-assisted Fenton reaction and lithium compensation [J].
Chen, Xiangping ;
Li, Shuzhen ;
Wang, Yi ;
Jiang, Youzhou ;
Tan, Xiao ;
Han, Weijiang ;
Wang, Shubin .
WASTE MANAGEMENT, 2021, 136 :67-75
[50]   Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries [J].
Yin, Xiongge ;
Huang, Kelong ;
Liu, Suqin ;
Wang, Haiyan ;
Wang, Hao .
JOURNAL OF POWER SOURCES, 2010, 195 (13) :4308-4312