On Stabilization of 2D Roesser Models

被引:43
作者
Bachelier, Olivier [1 ]
Yeganefar, Nima [1 ]
Mehdi, Driss [1 ]
Paszke, Wojciech [2 ]
机构
[1] Univ Poitiers, LIAS ENSIP, Batiment B25,2 Rue Pierre Brousse,TSA 41105, F-86073 Poitiers, France
[2] Univ Zielona Gora, Inst Control & Computat Engn, Szafrana 2, PL-65246 Zielona Gora, Poland
关键词
2D models; LMI; state feedback stabilization; YAKUBOVICH-POPOV LEMMA; STABILITY ANALYSIS; DISCRETE-SYSTEMS; 2-D;
D O I
10.1109/TAC.2016.2601238
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note is devoted to the stabilization of 2D Roesser models which are discrete, continuous, or mixed continuous-discrete. A recent linear matrix inequalities (LMIs) necessary and sufficient condition for stability of such models is used to derive a quasi non conservative technique for state feedback stabilization.
引用
收藏
页码:2505 / 2511
页数:7
相关论文
共 26 条
[1]   Stochastic stability analysis for 2-D Roesser systems with multiplicative noise [J].
Ahn, Choon Ki ;
Wu, Ligang ;
Shi, Peng .
AUTOMATICA, 2016, 69 :356-363
[2]   Two-Dimensional Dissipative Control and Filtering for Roesser Model [J].
Ahn, Choon Ki ;
Shi, Peng ;
Basin, Michael V. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (07) :1745-1759
[3]   l2 - l∞ Elimination of Overflow Oscillations in 2-D Digital Filters Described by Roesser Model With External Interference [J].
Ahn, Choon Ki .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2013, 60 (06) :361-365
[4]   LMI Stability Conditions for 2D Roesser Models [J].
Bachelier, Olivier ;
Paszke, Wojciech ;
Yeganefar, Nima ;
Mehdi, Driss ;
Cherifi, Abdelmadjid .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (03) :766-770
[5]   Testing stability of 2-D discrete systems by a set of real 1-D stability tests [J].
Bistritz, Y .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2004, 51 (07) :1312-1320
[6]   An existence result for polynomial solutions of parameter-dependent LMIs [J].
Bliman, PA .
SYSTEMS & CONTROL LETTERS, 2004, 51 (3-4) :165-169
[7]   Lyapunov equation for the stability of 2-D systems [J].
Bliman, PA .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2002, 13 (02) :201-222
[8]   On the stability of 2D state-space models [J].
Bouagada, Djillali ;
Van Dooren, Paul .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (02) :198-207
[9]  
Bouzidi Y., 2015, P 9 INT WORKSH MULT
[10]   Robust stability of polytopic systems via polynomially parameter-dependent Lyapunov functions [J].
Chesi, G ;
Garulli, A ;
Tesi, A ;
Vicino, A .
42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, :4670-4675