Polaritonic network as a paradigm for dynamics of coupled oscillators

被引:21
作者
Kalinin, Kirill P. [1 ]
Berloff, Natalia G. [1 ,2 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Skolkovo Inst Sci & Technol, Bolshoy Blvd 30,Bldg 1, Moscow 121205, Russia
基金
英国工程与自然科学研究理事会;
关键词
BOSE-EINSTEIN CONDENSATION; KURAMOTO MODEL; QUANTIZED VORTICES; EXCITON-POLARITONS; CHIMERA STATES; LIGHT; SYNCHRONIZATION; POPULATION; COHERENCE;
D O I
10.1103/PhysRevB.100.245306
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photonic and polaritonic lattices were recently theoretically proposed and experimentally realized as many-body simulators due to the rich behaviors exhibited by such systems at the macroscale. We show that the networks of polariton condensates encapsulate a large variety of behaviors of systems of coupled oscillators. By eliminating spatial degrees of freedom in a nonresonantly pumped polariton network, we establish that depending on the values of experimentally tunable parameters the networks of polariton condensates may represent Kuramoto, Sakaguchi-Kuramoto, Stuart-Landau, or Lang-Kobayashi oscillators and beyond. The networks of polariton condensates are therefore capable of implementing various regimes acting as analog spin Hamiltonian minimizers, producing complete and cluster synchronization, exotic spin glasses, and large-scale secondary synchronization of oscillations. We suggest that the recently implemented control of the system parameters for individual sites in polariton lattices allows addressing the interaction of sublattices that belong to different oscillatory classes.
引用
收藏
页数:8
相关论文
共 87 条
[1]   Solvable model for chimera states of coupled oscillators [J].
Abrams, Daniel M. ;
Mirollo, Rennie ;
Strogatz, Steven H. ;
Wiley, Daniel A. .
PHYSICAL REVIEW LETTERS, 2008, 101 (08)
[2]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[3]   Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, GL ;
Kevrekidis, PG ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[4]   Exciton-polaritons in lattices: A non-linear photonic simulator [J].
Amo, Alberto ;
Bloch, Jacqueline .
COMPTES RENDUS PHYSIQUE, 2016, 17 (08) :934-945
[5]  
[Anonymous], 2012, CHEM OSCILLATIONS WA
[6]   Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities [J].
Bajoni, Daniele ;
Senellart, Pascale ;
Wertz, Esther ;
Sagnes, Isabelle ;
Miard, Audrey ;
Lemaitre, Aristide ;
Bloch, Jacqueline .
PHYSICAL REVIEW LETTERS, 2008, 100 (04)
[7]   Bose-einstein condensation of microcavity polaritons in a trap [J].
Balili, R. ;
Hartwell, V. ;
Snoke, D. ;
Pfeiffer, L. ;
West, K. .
SCIENCE, 2007, 316 (5827) :1007-1010
[8]   All-optical polariton transistor [J].
Ballarini, D. ;
De Giorgi, M. ;
Cancellieri, E. ;
Houdre, R. ;
Giacobino, E. ;
Cingolani, R. ;
Bramati, A. ;
Gigli, G. ;
Sanvitto, D. .
NATURE COMMUNICATIONS, 2013, 4
[9]   Self-Trapping of Exciton-Polariton Condensates in GaAs Microcavities [J].
Ballarini, Dario ;
Chestnov, Igor ;
Caputo, Davide ;
De Giorgi, Milena ;
Dominici, Lorenzo ;
West, Kenneth ;
Pfeiffer, Loren N. ;
Gigli, Giuseppe ;
Kavokin, Alexey ;
Sanvittol, Daniele .
PHYSICAL REVIEW LETTERS, 2019, 123 (04)
[10]  
Berloff N. G., 2013, PHYS QUANTUM FLUIDS, P19