Tuning the properties of metal-organic framework nodes as supports of single-site iridium catalysts: node modification by atomic layer deposition of aluminium

被引:31
作者
Yang, Dong [1 ]
Momeni, Mohammad R. [2 ]
Demir, Hakan [2 ]
Pahls, Dale R. [2 ]
Rimoldi, Martino [3 ]
Wang, Timothy C. [3 ]
Farha, Omar K. [3 ,4 ]
Hupp, Joseph T. [3 ]
Cramer, Christopher J. [2 ]
Gates, Bruce C. [1 ]
Gagliardi, Laura [2 ]
机构
[1] Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA
[2] Univ Minnesota, Supercomp Inst, Chem Theory Ctr, Dept Chem, Minneapolis, MN 55455 USA
[3] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[4] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 21589, Saudi Arabia
关键词
BASIS-SETS; NU-1000; UIO-66; OXIDE; COMPLEXES; CHEMISTRY; RN;
D O I
10.1039/c7fd00031f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The metal-organic framework NU-1000, with Zr-6-oxo, hydroxo, and aqua nodes, was modified by incorporation of hydroxylated Al(III) ions by ALD-like chemistry with [Al(CH3)(2)( iso-propoxide)](2) followed by steam (ALD = atomic layer deposition). Al ions were installed to the extent of approximately 7 per node. Single-site iridium diethylene complexes were anchored to the nodes of the modified and unmodified MOFs by reaction with Ir(C2H4)(2)(acac) (acac = acetylacetonate) and converted to Ir(CO)(2) complexes by treatment with CO. Infrared spectra of these supported complexes show that incorporation of Al weakened the electron donor tendency of the MOF. Correspondingly, the catalytic activity of the initial supported iridium complexes for ethylene hydrogenation increased, as did the selectivity for ethylene dimerization. The results of density functional theory calculations with a simplified model of the nodes incorporating Al(III) ions are in qualitative agreement with some catalyst performance data.
引用
收藏
页码:195 / 206
页数:12
相关论文
共 34 条
  • [1] Synthesis and crystal structure of Ir(C2H4)2(C5H7O2)
    Bhirud, V. A.
    Uzun, A.
    Kletnieks, P. W.
    Craciun, R.
    Haw, J. F.
    Dixon, D. A.
    Olmstead, M. M.
    Gates, B. C.
    [J]. JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2007, 692 (10) : 2107 - 2113
  • [2] Engineering Metal Organic Frameworks for Heterogeneous Catalysis
    Corma, A.
    Garcia, H.
    Llabres i Xamena, F. X. L. I.
    [J]. CHEMICAL REVIEWS, 2010, 110 (08) : 4606 - 4655
  • [3] Cramer C. J., 2004, Essentials of Computational Chemistry: Theories and Models
  • [4] Metal-organic frameworks as heterogeneous catalysts for oxidation reactions
    Dhakshinamoorthy, Amarajothi
    Alvaro, Mercedes
    Garcia, Hermenegildo
    [J]. CATALYSIS SCIENCE & TECHNOLOGY, 2011, 1 (06) : 856 - 867
  • [5] Metal-Organic Frameworks: Opportunities for Catalysis
    Farrusseng, David
    Aguado, Sonia
    Pinel, Catherine
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (41) : 7502 - 7513
  • [6] Hybrid porous solids:: past, present, future
    Ferey, Gerard
    [J]. CHEMICAL SOCIETY REVIEWS, 2008, 37 (01) : 191 - 214
  • [7] The Chemistry and Applications of Metal-Organic Frameworks
    Furukawa, Hiroyasu
    Cordova, Kyle E.
    O'Keeffe, Michael
    Yaghi, Omar M.
    [J]. SCIENCE, 2013, 341 (6149) : 974 - +
  • [8] Metal Organic Framework Catalysis: Quo vadis?
    Gascon, Jorge
    Corma, Avelino
    Kapteijn, Freek
    Llabres i Xamena, Francesc X.
    [J]. ACS CATALYSIS, 2014, 4 (02): : 361 - 378
  • [9] Horike S, 2009, NAT CHEM, V1, P695, DOI [10.1038/NCHEM.444, 10.1038/nchem.444]
  • [10] Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition
    Kim, In Soo
    Borycz, Joshua
    Platero-Prats, Ana E.
    Tussupbayev, Samat
    Wang, Timothy C.
    Farha, Omar K.
    Hupp, Joseph T.
    Gagliardi, Laura
    Chapman, Karena W.
    Cramer, Christopher J.
    Martinson, Alex B. F.
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (13) : 4772 - 4778