A semi-parametric Bayesian model for unsupervised differential co-expression analysis

被引:31
作者
Freudenberg, Johannes M. [1 ]
Sivaganesan, Siva [2 ]
Wagner, Michael [3 ]
Medvedovic, Mario [1 ]
机构
[1] Univ Cincinnati, Coll Med, Dept Environm Hlth, Lab Stat Genom & Syst Biol, Cincinnati, OH 45267 USA
[2] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[3] Cincinnati Childrens Hosp, Med Ctr, Div Biomed Informat, Cincinnati, OH 45229 USA
基金
美国国家卫生研究院;
关键词
BREAST-CANCER PATIENTS; GENE-EXPRESSION; MOLECULAR PORTRAITS; MICROARRAY DATA; ESTROGEN; TUMOR; SIGNATURES; DISCOVERY; NETWORKS; PATTERNS;
D O I
10.1186/1471-2105-11-234
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Differential co-expression analysis is an emerging strategy for characterizing disease related dysregulation of gene expression regulatory networks. Given pre-defined sets of biological samples, such analysis aims at identifying genes that are co-expressed in one, but not in the other set of samples. Results: We developed a novel probabilistic framework for jointly uncovering contexts (i.e. groups of samples) with specific co-expression patterns, and groups of genes with different co-expression patterns across such contexts. In contrast to current clustering and bi-clustering procedures, the implicit similarity measure in this model used for grouping biological samples is based on the clustering structure of genes within each sample and not on traditional measures of gene expression level similarities. Within this framework, biological samples with widely discordant expression patterns can be placed in the same context as long as the co-clustering structure of genes is concordant within these samples. To the best of our knowledge, this is the first method to date for unsupervised differential co-expression analysis in this generality. When applied to the problem of identifying molecular subtypes of breast cancer, our method identified reproducible patterns of differential co-expression across several independent expression datasets. Sample groupings induced by these patterns were highly informative of the disease outcome. Expression patterns of differentially co-expressed genes provided new insights into the complex nature of the ER alpha regulatory network. Conclusions: We demonstrated that the use of the co-clustering structure as the similarity measure in the unsupervised analysis of sample gene expression profiles provides valuable information about expression regulatory networks.
引用
收藏
页数:15
相关论文
共 57 条
[1]   Microarray data analysis: from disarray to consolidation and consensus [J].
Allison, DB ;
Cui, XQ ;
Page, GP ;
Sabripour, M .
NATURE REVIEWS GENETICS, 2006, 7 (01) :55-65
[2]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[3]   Computational discovery of gene modules and regulatory networks [J].
Bar-Joseph, Z ;
Gerber, GK ;
Lee, TI ;
Rinaldi, NJ ;
Yoo, JY ;
Robert, F ;
Gordon, DB ;
Fraenkel, E ;
Jaakkola, TS ;
Young, RA ;
Gifford, DK .
NATURE BIOTECHNOLOGY, 2003, 21 (11) :1337-1342
[4]   BicAT: a biclustering analysis toolbox [J].
Barkow, S ;
Bleuler, S ;
Prelic, A ;
Zimmermann, P ;
Zitzler, E .
BIOINFORMATICS, 2006, 22 (10) :1282-1283
[5]   NCBI GEO: archive for high-throughput functional genomic data [J].
Barrett, Tanya ;
Troup, Dennis B. ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Rudnev, Dmitry ;
Evangelista, Carlos ;
Kim, Irene F. ;
Soboleva, Alexandra ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Muertter, Rolf N. ;
Edgar, Ron .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D885-D890
[6]   Clustering methods for microarray gene expression data [J].
Belacel, Nabil ;
Wang, Qian ;
Cuperlovic-Culf, Miroslava .
OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2006, 10 (04) :507-531
[7]   Oncogenic pathway signatures in human cancers as a guide to targeted therapies [J].
Bild, AH ;
Yao, G ;
Chang, JT ;
Wang, QL ;
Potti, A ;
Chasse, D ;
Joshi, MB ;
Harpole, D ;
Lancaster, JM ;
Berchuck, A ;
Olson, JA ;
Marks, JR ;
Dressman, HK ;
West, M ;
Nevins, JR .
NATURE, 2006, 439 (7074) :353-357
[8]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[9]   Mechanisms of primary and secondary estrogen target gene regulation in breast cancer cells [J].
Bourdeau, Veronique ;
Deschenes, Julie ;
Laperriere, David ;
Aid, Malika ;
White, John H. ;
Mader, Sylvie .
NUCLEIC ACIDS RESEARCH, 2008, 36 (01) :76-93
[10]   Genome-wide analysis of estrogen receptor binding sites [J].
Carroll, Jason S. ;
Meyer, Clifford A. ;
Song, Jun ;
Li, Wei ;
Geistlinger, Timothy R. ;
Eeckhoute, Jerome ;
Brodsky, Alexander S. ;
Keeton, Erika Krasnickas ;
Fertuck, Kirsten C. ;
Hall, Giles F. ;
Wang, Qianben ;
Bekiranov, Stefan ;
Sementchenko, Victor ;
Fox, Edward A. ;
Silver, Pamela A. ;
Gingeras, Thomas R. ;
Liu, X. Shirley ;
Brown, Myles .
NATURE GENETICS, 2006, 38 (11) :1289-1297