Existence of infinitely many periodic solutions for the radially symmetric wave equation with resonance

被引:18
作者
Chen, Jianyi [1 ]
Zhang, Zhitao [2 ]
机构
[1] Qingdao Agr Univ, Sci & Informat Coll, Qingdao 266109, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear wave equation; Periodic solutions; Minimax principle; FORCED VIBRATIONS; BALL;
D O I
10.1016/j.jde.2015.12.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the periodic-Dirichlet problem for a forced nonlinear wave equation with resonance u(tt) - Delta u = mu u + a(t, x)vertical bar u vertical bar(p-1)u in a n-dimensional ball, Under some suitable assumptions on mu, p and a (t, x), we prove the existence of infinitely many radially symmetric time-periodic solutions for the problem by variational methods. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:6017 / 6037
页数:21
相关论文
共 25 条
[1]  
[Anonymous], 2000, COURANT LECT NOTES M
[2]  
[Anonymous], 1986, Critical point theory and its applications
[3]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[4]  
[Anonymous], 2000, Variational methods
[5]  
Ben-Naoum A.K., 1993, Topol. Methods Nonlinear Anal., V1, P113
[6]  
Ben-Naoum AK., 1995, TOPOL METHOD NONL AN, V5, P177
[7]   ON THE EXISTENCE OF PERIODIC-SOLUTIONS FOR SEMILINEAR WAVE-EQUATION ON A BALL IN R(N) WITH THE SPACE DIMENSION N-ODD [J].
BENNAOUM, AK ;
BERKOVITS, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (02) :241-250
[8]   Diophantine approximation, Bessel functions and radially symmetric periodic solutions of semilinear wave equations in a ball [J].
Berkovits, J ;
Mawhin, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (12) :5041-5055
[9]  
BREZIS H, 1978, COMMUN PUR APPL MATH, V31, P1