Characterization and quantification of silver nanoparticles in nutraceuticals and beverages by asymmetric flow field flow fractionation coupled with inductively coupled plasma mass spectrometry
Asymmetric flow field flow fractionation;
Silver nanoparticles;
Inductively coupled plasma mass spectrometry;
Nutraceuticals;
Beverages;
TOXICITY;
PARTICLES;
STABILITY;
COLLOIDS;
ONLINE;
SIZE;
D O I:
10.1016/j.chroma.2014.10.060
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
This study evaluated the feasibility of asymmetric flow field flow fractionation coupled with inductively coupled plasma mass spectrometry (AF(4)-ICP-MS) for separation, characterization and quantification of silver nanoparticles (AgNPs) in complex nutraceutical and beverage samples. For improved determination, different analysis conditions were proposed depending on the NP size, i.e. below 20 nm and in the 20-60 nm range. After optimization of the different experimental parameters affecting the AF(4) separation process and the analyte detection, the proposed methods showed a wide dynamic linear range (i.e., in the 10-1000 mu g L-1) and limits of detection below 28 ng L-1. A previous probe ultrasonication for 90s (corresponding to 45 pulses of 2 s) of the tested samples resulted in complete AgNPs disaggregation. As a result, a fast accurate determination was achieved (complete analysis was done in ca. 37 min). The practicality of the proposed methodology for the intended determination was demonstrated by successful determination of the AgNPs present in a variety of nutraceuticals and a beverage at concentration levels in the 0.7-29.5 x 10(3) mu g L-1 range. A good agreement was observed among these concentration data and those determined by more conventional sample preparation techniques, such as ultracentrifugation and acid digestion. Also, the estimated NP sizes using AF(4) compared satisfactorily with those determined by image techniques, i.e. transmission electron microscopy (TEM). All together demonstrated the utility of this novel analytical methodology for the analysis of AgNPs of different size in complex matrices. (C) 2014 Elsevier B.V. All rights reserved.